
FH Aachen
University of Applied Sciences

Master’s Thesis

Engineering a Hybrid Reciprocal Recommender System

Specialized in Human-to-Human Implicit Feedback

Kai Dinghofer

January 28, 2021

1st Examiner Prof. Dr. rer. nat. Heinrich Faßbender

2nd Examiner Torben Hensgens, M. Eng.

Contents

1 Introduction 1
1.1 Motivation . 1

1.2 Objectives . 2

1.3 Conventions . 3

1.4 Overview . 3

2 Recommender Systems 5
2.1 Terminology . 5

2.2 Types . 6

2.2.1 Content-Based Filtering . 8

2.2.2 Collaborative Filtering . 9

2.2.2.1 Matrix Factorization - Intro 10

2.2.2.2 Matrix Factorization - Loss and Objective 11

2.2.2.3 Summary . 14

2.2.3 Hybrid: LightFM . 15

2.2.3.1 Embedding Metadata Features 15

2.2.3.2 Implicit Feedback Specialization 18

2.2.3.3 Summary . 19

2.3 Challenges . 20

2.3.1 Tackling Cold-Start . 20

2.3.2 Feature Engineering . 21

2.3.3 Fairness . 22

2.3.4 Explainability . 24

2.3.5 Summary . 28

3 Reciprocal Recommender Systems 29
3.1 Introduction . 29

3.1.1 Definition . 30

i

Contents

3.1.2 Specifics . 32

3.1.2.1 Preference Aggregation . 32

3.1.2.2 Single-class vs. Two-class 33

3.1.2.3 Symmetric vs. Asymmetric Interaction 34

3.2 Summary: Comparison to traditional RS . 35

3.3 Analysis of Requirements . 37

3.3.1 Challenges and Difficulty . 37

3.3.1.1 Cold-Start . 38

3.3.1.2 Feature Engineering . 39

3.3.1.3 Fairness . 39

3.3.1.4 Explainability . 40

3.3.2 Requirements . 43

4 Chaos 47
4.1 Overview . 47

4.1.1 Workflow . 47

4.1.2 Technology . 49

4.1.2.1 Data Model . 50

4.1.2.2 Feature Engineering . 50

4.1.2.3 Prediction . 50

4.1.2.4 Visualization . 51

4.2 Core Components . 52

4.2.1 Data Model . 52

4.2.1.1 User Interactions . 53

4.2.1.2 User Profile . 55

4.2.2 Data Source . 55

4.2.3 Data Processor . 56

4.2.3.1 Alleviate Popularity Bias 59

4.2.3.2 Summary . 59

4.2.4 Recommendation . 60

4.2.4.1 Translator . 60

4.2.4.2 Candidate Generator . 61

4.2.4.3 Predictor . 63

ii

Contents

4.2.5 Evaluator . 64

4.2.5.1 Metrics . 65

4.2.5.2 Example and Summary . 67

4.3 Recommendation Algorithms . 73

4.3.1 LFMPredictor - Hybrid Model using LightFM 73

4.3.2 ReciprocalWrapper - Reciprocity Enabler 75

4.3.3 RCFPredictor - Reciprocal Collaborative-Filtering 78

4.4 Chaos for GitHub . 81

4.4.1 Data Generation . 81

4.4.1.1 Interactions and User Profile 82

4.4.1.2 Chaos GQL Specification 84

4.4.1.3 Reciprocal BFS . 87

4.4.2 Feature Engineering . 90

4.4.3 Results . 93

4.4.3.1 Evaluation . 94

4.4.3.2 Explainability and Visualization 96

4.4.3.3 Summary . 99

5 Conclusions 101
5.1 Contributions . 102

5.1.1 Recommendation Approaches . 102

5.1.1.1 Approach to the research question 102

5.1.1.2 Other approaches contributed to 103

5.1.2 Emerging Applications . 104

5.1.3 Fusion Strategies and Reciprocity . 105

5.1.4 Evaluation and Reproducibility . 105

5.1.5 Fairness, Explainability and Ethical Considerations 106

5.2 Objectives accomplished in Code . 107

5.3 Outlook . 108

5.3.1 Recommendation Optimizations . 108

5.3.1.1 Effectiveness . 108

5.3.1.2 Efficiency . 109

5.3.2 Interpretability and Explainability 109

5.3.3 Unified Evaluation . 110

iii

Contents

5.3.4 Collaborative Chaos . 111

A Appendix 121

iv

List of Figures

2.1.1 Example star ratings (explicit feedback through interaction) 5

2.2.1 Type hierarchy of different RS (sub)divisions 6

2.2.2 Simple 2D embedding space 𝐸𝑆 . 7

2.2.3 Embeddings in matrix notation . 8

2.2.4 Matrix Factorization Process . 11

2.2.5 Matrix Factorization and Factorization Machine training data 17

2.2.6 Users/Features represented in a 2D embedding space 19

2.3.1 Inconsistent recommendations through popularity bias for a diverse user . . . 23

2.3.2 Example interface for neighborsrating, adapted from [GJG14] 26

2.3.3 Example tag cloud for a movie recommendation explanation 27

3.1.1 Conceptual view on RRSs . 31

3.3.1 Comparison of the complexity with RRSs in mint and traditional RSs in black . 37

3.3.2 Reciprocal explanation in a dating RE with removed partner preference attributes. 43

4.1.1 Offline Training with Chaos before deployment 48

4.1.2 Technology Stack of Chaos . 49

4.2.1 Data Model UML diagram . 52

4.2.2 Example of a directed interaction graph/network with color bar 54

4.2.3 User profile DataFrame with one row per user and columns as attributes 55

4.2.4 Data Source and implementations class diagram 56

4.2.5 Data Processor and Pipelines class diagram . 57

4.2.6 Major components around the Predictor class 60

4.2.7 Candidate Generator Decorator Sequence Diagram 62

4.2.8 Evaluator class diagram . 64

4.2.9 Interaction Graph with two different courses 67

4.2.10 Evaluation report: Chart comparison of 3 predictors and 4 different metrics . . 69

4.3.1 Conceptual overview of the LFRR model [NP19b] 75

v

List of Figures

4.3.2 ReciprocalWrapper and AggregationStrategy classes 77

4.3.3 Samples of 𝑝(𝑢 ∈ {0.2, 0.4, 0.6, 0.8}, 𝑣) suitable for MeanAggregationStrategy . 78

4.4.1 Two GitHub interaction graphs with 500 nodes with the same data, but each

having a different layout . 89

4.4.2 Processing GitHub user profiles by extracting textual features from bio and

repositories . 91

4.4.3 Evaluation report of the different LFMPredictor configurations (see table 4.4.3) 95

4.4.4 Different queries for GitHub user tag similarities 97

4.4.5 Using TensorBoard’s Projector to visualize and interpret latent user embeddings 98

5.1.1 Perspective and challenges of RRSs . 102

vi

Acronyms

RS Recommender System. v, 1–3, 5–7, 13, 15, 18, 20–31, 34–40, 50–53, 63, 65, 66, 69, 73, 74,

81, 87, 102, 103, 105–108

MF Matrix Factorization. v, 10, 14–18, 103

FM Factorization Machine. v, 17, 18, 109

RRS Reciprocal Recommender System. v, vi, 1–3, 29–40, 43, 45, 47, 49–51, 61, 64, 66, 73, 75,

77, 78, 94, 101–108, 110

RE Reciprocal Environment. v, 33, 42, 43, 94, 104, 105

DL Deep Learning. 2, 63

CBF Content-Based Filtering. 6–10, 14, 15, 20, 23, 26, 52, 78, 82, 108

CF Collaborative Filtering. 6, 7, 9, 10, 14, 15, 17, 19, 20, 23, 26, 52, 63, 64, 69, 73, 78, 79, 103

ML Machine Learning. 11, 13, 14, 16, 21, 22, 28, 47, 59, 71, 107

SGD Stoachastic Gradient Descent. 14, 71

UX User Experience. 22

AI Artificial Intelligence. 24, 106

EU European Union. 24

SNS Social Network Site. 34, 35, 37, 54, 75, 78, 82, 84, 99, 105, 107

EoI Expression of Interest. 34, 42, 53, 59

API Application Programming Interface. 47, 50, 73, 81, 84, 88, 89, 99, 104, 105

NLP Natural Language Processing. 50, 93

UI User Interface. 51

vii

Acronyms

UML Unified Modelling Language. 52

ISE Information Systems Engineering. 55

CSV Comma-Separated Values. 55, 98

CG Candidate Generator. 61–63

LRU Least Recently Used. 62

RCF Reciprocal Collaborative Filtering. 64, 78, 80, 103, 108, 109

AUC Area Under the ROC-Curve. 68, 69

GQL GraphQL. 84, 85, 93, 99, 105

DSL Domain-Specific Language. 84

REST Representational State Transfer. 85, 87

BFS Breadth-First Search. 87–90, 93, 94, 99, 105

GPE Geo-Political Entity. 91

UMAP Uniform Manifold Approximation and Projection. 98

tSNE t-distributed Stochastic Neighbor Embedding. 98

PCA Principal Component Analysis. 98

viii

1 Introduction

1.1 Motivation

In times of technology and information overload, user attention is a rare resource. To al-

leviate the problem, so-called Recommender Systems (RS) are working in the background:

Whenever we open up Netflix, shop on Amazon or search with Google, a system that rec-

ommends new items based on personal interests attempts to offer a tailored experience that

fits in the bounds of our time-limited focus. Optimally, the provided recommendations let us

discover innovative options that would otherwise perish in the huge amount of information

that we need to filter (un)consciously. On the other side of the coin, this potential of RSs

could be exploited solely as a means of maximizing profits, with the true quality of recom-

mendations for the users being only of a second-class nature. Balancing two-sided interests

for recommendations is key to long-term success, as described in the following.

As humans, we not only want to find a newmovie, fashion product or search result. As social

beings, we want to find the best people to connect to. Human-to-human recommendations

can be applied to many different areas, for instance learning and studying (finding a suitable

study partner), in the job industry (applicant and recruiter) or inmore obvious social network

scenarios (finding friends or dating). When it comes to typical RSs, it is important to follow

the user’s interests, but not the item’s. To me, recommendations where both participants

know that they contribute to success is what makes them an exciting technology. Hence, I

specifically want to examine the state of the art for Reciprocal Recommender Systems (RRS):

They heavily depend on mutual interests, the inherent reason of being a social being.

After first experiments, it became clear that this field of RSs is still in an early stage. To

this end, I am very motivated to present Chaos, a framework for RRSs that hopefully enables

researchers to discover new possibilities and interpretations in this field.

1

1 Introduction

1.2 Objectives

A recurring and severe problem of research on RSs is that the results are often not repro-
ducible in even “slightly different scenarios”, commonly called the reproducibility crisis of RSs
[Bee+16]. The reproducibility of experiments is a fundamental aspect of open science and

key to reliability and efficient advancement [Mun+17]. On one side, the limited reproducibil-

ity leads to comprehension problems: If the results cannot be reproduced, it is impossible to

evaluate the validity of the study which is the necessary condition to further improve it. On

the other side, novel RS approaches (for instance based on DL) are often claimed to outper-

form traditional algorithms, but are in the reality not consistently better [Dac+19], which

leads to wrong expectations towards specific algorithms.

For the subarea of user-to-user RRSs, the problem is even further accelerated: There are only

a few scientific papers and the field is still emerging [Agg+16, p. 444] [Pal+20]. Consequen-

tially, because reproducibility on research of non-reciprocal RSs is already limited, the prob-

lem is worse for RRSs. Additionally, many studies about RRSs only use proprietary datasets

for the evaluation of proposed algorithms [Ake+11] [Piz+10b] [Xia+16] [Pal+20] [NP19a].

This is especially a problem when the algorithm is fine-tuned on this specific dataset for

maximized performance but cannot further generalize beyond that. Regarding the imple-

mentation side of RRSs, there are far less developer resources (libraries and frameworks)

available for RRSs: For novice RS developers and researchers, getting started with RRSs is

therefore challenging. It is often unclear if and how an established RS algorithm can be

applied to reciprocal environments.

The following three key objectives are set to tackle the aforementioned problems:

1. Highlight the importance, characteristics and requirements of RRSs by comparing

them with their parent, traditional RSs.

2. Implement a multi-purpose framework for reciprocal recommendations to aid and ac-

celerate the research on RRSs.

3. Provide reproducible and open-source results.

Finally, the following is formulated as a research question to support and accompany the

realization of the above objectives:

Can a user-to-item RS be utilized to generate reciprocal user-to-user recommendations?

2

1.3 Conventions

1.3 Conventions

Throughout this work, important terms will be written italic on first occurrence. Acronyms

(such as RS) always link to their full form in the glossary.

To highlight, bold formatting is used, but only rarely to not defeat the purpose of importance.

Code examples and references to code, like keywords, are written in a Monospace font.

Additional illustrative examples are put into coloured boxes to support and deepen the un-

derstanding and to separate them from the text flow. Figures are numerated based on parent

section, to make it easier to locate them.

1.4 Overview

We start with chapter 2 which is essentially a literature review of traditional user-to-item

RSs that introduces important algorithms to build our foundation of common knowledge,

therewith assisting humans who are not familiar with RSs. Moreover, we show common

challenges when implementing a state-of-the-art RS. Readers with the necessary knowledge

for RSs and the named key terms in the section headlines can decide to skip this chapter or

alternatively only read the necessary ones.

In chapter 3, with the acquired knowledge, we explain what it means for a RS to be reciprocal.
Thus, the differences and most relevant properties are highlighted. Then, we are able to

derive requirements for a generic framework by comparing the challenges from the previous

chapter and putting them into a reciprocal context.

In chapter 4, we introduce Chaos, a multi-purpose RRS framework implementation that is

able to output reciprocal recommendations by using human-to-human interactions as in-

put. We explain the main components of the framework and its most relevant concepts and

software-architectural decisions. In addition, we provide example scenarios that can be re-

produced by the interested reader, thus making the thesis partly interactive.

In the last chapter 5, we analyze strengths and limitations of this work and the implemented

solution: Finally, we examine the contributions made by this work and propose future im-

provements and research possibilities in the outlook.

3

2 Recommender Systems

We start by introducing the basic terminology of RSs (section 2.1), their most popular types

(section 2.2) and their building blocks – some of the most relevant algorithms which are

applied in this thesis (section 2.2.2 and section 2.2.3).

In the last section 2.3, we analyze challenges of modern RSs that typically need to be tackled.

2.1 Terminology

The following basic terms are introduced beforehand:

• Users: The users of a RS are the human entity who receive recommendations.

• Items: Consequently, items are the entity to be recommended to the user.

• Features: Specific attributes of users that are (fully or partially) used as inputs to make

new item recommendations to the user.

• Interactions: Interactions are made by users and either indicate a form of explicit feed-
back (e.g. star ratings as shown in fig. 2.1.1, like-/dislike button) or implicit feedback

(e.g. viewing an item, using the share button) for an item. The latter does not clearly

distinct between good and bad interactions, but usually many interactions to one and

the same item are an expression of interest and liking, thus the feedback is implicit

rather than explicit.

Bob, how would you rate our app?

I strongly dislike it...
I think it's okay.
I love it!

Figure 2.1.1: Example star ratings (explicit feedback through interaction)

5

2 Recommender Systems

2.2 Types

Figure 2.2.1 provides an overview of the three most important RS types which are discussed

in the next sections. Content-Based Filtering (CBF) considers content features of users and/or

items to infer recommendations, Collaborative Filtering (CF) uses collaborative information

of multiple users and lastly Hybrid RSs incorporate both approaches in a suitable way. These

are the core of most modern RSs and therefore fundamental to this thesis.

Figure 2.2.1: Type hierarchy of different RS (sub)divisions

In CF, one typically differentiates between Model-Based and Memory-Based methods. The

latter were among the first studied algorithms in the collaborative filtering domain. Here,

either user-oriented or item-oriented CF is used. Considering the objective to predict an

unobserved rating for user 𝑈 to an item 𝐼 , they work in different but complementary ways:

User-Based CF first calculates similar users to 𝑈 and then averages the known ratings of the

similar users. Item-based CF first calculates similar items to 𝐼 and then approximates the

rating by calculating the weighted average of already rated items by 𝑈 [Agg+16]. Broadly

speaking, these two Memory-Based methods are often too simple to represent complex real-

world scenarios on their own. We therefore concentrate on Model-Based CF that usually

need a model to be trained (explanation follows).

6

2.2 Types

𝑥

𝑦

𝐮

𝐯𝟑

𝐯𝟐

𝐯𝟏

Figure 2.2.2: Simple 2D embedding space 𝐸𝑆

Both, CBF as well as CF oftenmake use of an

Embedding Space to capture semantic simi-

larity. The more similar the items or users

are, the “closer” they are positioned to each

other, with the Embeddings being denoted

by vectors. Figure 2.2.2 shows such a 2 di-

mensional embedding space 𝐸), with 𝑢 ∈ 𝑈
being the user and 𝑣𝑛 ∈ 𝑉 representing the

items. There are multiple arithmetic meth-

ods to measure the closeness (or negated: the
distance). The function for similarity can be

chosen dependent on the specific use-case,

e.g. cosine, dot product and Euclidean dis-
tance. For instance, the dot product is more suited to capture the popularity of an item,

whereas cosine is scale-invariant [Goo18]. In fig. 2.2.2, all of the named metrics would cal-

culate 𝑣3 as the closest item for user 𝑢.
 Example 2.2.1: Embeddings for Fashion

One can think of the items 𝑣𝑛 in fig. 2.2.2 being fashion products to be recommended

to user 𝑢. The 𝑥 axis captures the sustainability, e.g. 𝑣1 represents a “fast-fashion”

article produced under bad circumstances, opposing to 𝑣2 and 𝑣3 which implement

some goals of sustainable developmenta. The 𝑦 axis captures “trendiness”, e.g. 𝑣1 and

𝑣2 being “oldschool”, opposing to 𝑣3 which strongly follows a recent trend. User 𝑢 is

positioned based on his preference. In this case, the user liked sustainable and trendy

fashion products in the past.

The semantic of the embeddings is manually crafted here, and for many RS algorithms the mean-

ing/embedding is actually learned through training a model, but here we wanted to show that a wide

spectrum of information (features) can be used and embedded.

asee https://sdgs.un.org/goals for the UN sustainable development goals.

In the next section, the idea of embeddings becomes even more concrete and less abstract.

7

https://sdgs.un.org/goals

2 Recommender Systems

2.2.1 Content-Based Filtering

While there is a broad spectrum of Content-Based Filtering algorithms available, we focus on

understanding the general approach and one exemplary similarity measure.

Consider the following scenario [see Goo18, CBF Basics]: Alice (user) loves smartphone ap-

plications and would like to install a new application (item). Recently, she has interacted

with 2 applications (one from the publisher “Science R Us” and one from “Healthcare Solu-

tions”). She also selected apps from the category “Education” when she has been asked for

her preferences by her favorite app store.

Figure 2.2.3: Embeddings in matrix notation

Source: [Goo18]

The upper part of fig. 2.2.3 shows that each application has a row vector 𝑣 that represents

its features. Alice’s preferences are denoted in the lower part vector 𝑢 of fig. 2.2.3. Note that

the preferences are represented on a per-feature basis rather than a per-app basis; in this

example, the matrix does not contain any explicit information about the actual apps Alice

has interacted with. For CBF, we do not need to consider any other user and and we solely

focus our view on Alice. Both vectors, 𝑢 and 𝑣 , are filled with binary values for simplicity.

When searching for a new app recommendation, we can now calculate the similarity based

on the content information we have, e.g. by using the dot product as our similarity function

𝑠(𝑢, 𝑣) which accepts two vectors as an input (the higher the result for an app, the more

similar it is to Alice’s preferences):

8

2.2 Types

𝑠(𝑢, 𝑣) ≔ 𝑢 ⋅ 𝑣 =
𝑑
∑
𝑐=1

𝑢𝑐𝑣𝑐 (2.2.1)

In eq. (2.2.1), 𝑑 is the dimensionality of our embedding space 𝐸𝑆 = ℝ𝑑 . In the above example

fig. 2.2.3, an explicit set of 6 features (3 categorical information or tags plus 3 different app

publisher) is shown, but there can be far more, as indicated by the three dots. Enlarging

the number can improve accuracy, but features should be engineered carefully and require

domain knowledge [Goo18] (more details follow in section 2.3.2).

With a similarity score of 2, Alice will probably like the educational app from “Science R Us”

most (first row in the app matrix). Finding similar items to make predictions is intuitive here;

the more preferred features are in the app, the more the user will like it.

Finally, CBF is especially suited for new items that enter the system since the representation

consisting of the items’ feature vector is known right at the start. But CBF is not effective in

making predictions for new users [pp. 15 Agg+16] (more details will follow in section 2.3.1).

2.2.2 Collaborative Filtering

While pure CBF utilizes similarities between items only, Collaborative Filtering (CF) follows

a different approach and is in fact collaborative because it allows transfer learning between

users to occur. For example (see section 2.2.1): Alice likes the app from “Science R Us”. If

Bob, another user, is similar to Alice, he will probably like the app, too.

First, we denote the user-item interaction matrix1 as a 𝑛 × 𝑚 matrix 𝑅, with 𝑛 users and 𝑚
items, for instance 2 users and 3 items. In this first example, 𝑅 contains explicit feedback data

in form of star-ratings (see fig. 2.1.1) from 1 to 5:

𝑅 = [5 0 4
0 0 3] (2.2.2)

For instance, the first user 𝑢1 rated item 𝑣1 with 5 stars and 𝑣3 with 4 stars, but did not rate

the second item 𝑣2, as we denote unobserved ratings with 0. Note that we do not capture

1The matrix is denoted with 𝑅 because this is a common notation. While some sources accordingly use the
term rating matrix, in this work, we consistently use the term interaction matrix.

9

2 Recommender Systems

interactions on a per-feature basis like in section 2.2.1. Instead, we store the items with

which the users have interacted explicitly, while the item’s content features itself are latent.
We do not need to know about or incorporate any user- or item features.

This has an important advantage: It means that we do not need to carefully engineer features

about the items (remember that this requires a deep understanding of the item domain, see

section 2.2.1). The negative side: With CBF from section 2.2.1, we could actually recommend

completely new items that no user has ever interacted with, because we only need the item’s

metadata to measure similarity. With CF, this is an impossible task, since its conceptual base

always is an interactionmatrix that will not have an entry for this item initially. The question

is now how we can build a model which is able to learn the latent embeddings on its own

simply by feeding the interaction matrix as our only input.

2.2.2.1 Matrix Factorization - Intro

One popular embedding model is Matrix Factorization (MF) which is based on the idea that

𝑅 can be approximated by decomposing it into two embedding matrices; the user embedding

matrix 𝑈 and the item embedding matrix 𝑉 . Thus, the interaction matrix 𝑅 can be factorized

as follows [Agg+16] [KBV09]:

𝑅𝑚×𝑛 ≈ 𝑈
𝑛×𝑑

⋅ 𝑉
𝑚×𝑑

𝑇 (2.2.3)

In fact, the reason for using the dot product of 𝑈 and the transposed 𝑉 𝑇 (also called dot product

𝑈𝑉 𝑇) gets more intuitive when we internalize that the model needs to capture the relation-
ship between users and items from a high-level view. This relationship is also illustrated in

fig. 2.2.4.

Since the dimensionality 𝑑 of the latent embeddings is often chosen to be much smaller than

𝑛 or 𝑚 of the interaction matrix itself, MF models (also called latent-factor models) are typ-

ically memory-efficient, as it enables a more compact representation of 𝑅. 𝑈𝑉 𝑇 is only an

approximation which is due to the fact that (𝑛 + 𝑚)𝑑 < 𝑛 × 𝑚. It means that there are less

entries in the embedding matrices 𝑈𝑉 than in the interaction matrix 𝑅, making it impossible

to reconstruct exact values in every case [Goo18].

10

2.2 Types

Figure 2.2.4: Matrix Factorization Process

Source: [Lun20]

2.2.2.2 Matrix Factorization - Loss and Objective

Whenever we want to find out if an approximation algorithm works well (in this context, in

approximating the interaction matrix), it is mandatory to measure loss. In the ML world, loss

is the key concept to penalize for inaccurate predictions. Reducing loss is how ML models

make (better) predictions.

A small analogy: Learning occurs by doing mistakes that need to be observed. If an error

cannot be properly identified, no learning can occur. After all, this not only applies to hu-

mans, but also to machines: In the ML field, learning is accomplished by adjusting weights

of a function after quantifying their respective loss, optimally until a defined convergence

condition is fulfilled.2

𝑈𝑉 𝑇 is an attempt to reconstruct the matrix 𝑅, thus we want to identify the error. This error

is called the reconstruction error of 𝑈𝑉 𝑇 , so let us introduce a residual matrix 𝐸 [Agg+16,

p. 95]3:

𝐸 = 𝑅 − 𝑈𝑉 𝑇 (2.2.4)

The residual matrix 𝐸 is the difference between our real data (the interaction matrix 𝑅) and
the approximation (the dot product of the embeddings 𝑈𝑉 𝑇). From another point of view

𝑈𝑉 𝑇 becomes exact (=) instead of approximated (≈) by simply adding the residual matrix 𝐸:
2see also Goo20, for a comprehensive introduction to Machine Learning.
3The residual matrix is less commonly used in other sources, but in this case, it helps with introducing the

concept of loss on a higher level (the matrices’).

11

2 Recommender Systems

𝑅 = 𝑈𝑉 𝑇 + 𝐸 (2.2.5)

This conceptually highlights how we can calculate error on a matrix level. Now, let us go the

path from top-to-down, from matrix→ vector→ scalar-level, by expressing how to calculate

a prediction for a user-item pair (𝑖, 𝑗): Let ̂𝑟 (𝑖, 𝑗) be the rating prediction function for a user 𝑖
to item 𝑗, which can be expressed as the dot product of the respective 𝑖th and 𝑗th row vectors

of the matrices 𝑈 and 𝑉 , 𝑢𝑖 ∈ 𝑈 and 𝑣𝑗 ∈ 𝑉 [see Agg+16, pp. 94 – 97]:

̂𝑟 (𝑖, 𝑗) ≔ 𝑢𝑖 ⋅ 𝑣𝑗 =
𝑑
∑
𝑐=1

𝑢𝑖𝑐 𝑣𝑗𝑐 = ̂𝑟𝑖𝑗 ≈ 𝑟𝑖𝑗 with ̂𝑟𝑖𝑗 ∈ 𝑈𝑉 𝑇 and 𝑟𝑖𝑗 ∈ 𝑅 (2.2.6)

Note that this relation is represented by the grey colored cell in fig. 2.2.4, with ̂𝑟 (2, 2) = ̂𝑟22.
Given the definitions of our actual rating 𝑟𝑖𝑗 and the prediction ̂𝑟𝑖𝑗 from the previous eq. (2.2.6),

one possibility to calculate the error for (𝑖, 𝑗) is given by the following loss function:

𝑒(𝑖, 𝑗) ≔ |𝑟𝑖𝑗 − ̂𝑟𝑖𝑗 | (2.2.7)

This corresponds to the absolute value of entry (𝑖, 𝑗) in 𝑒𝑖𝑗 ∈ 𝐸 from eq. (2.2.4). It is also known

as 𝐿1 loss. A more suitable and commonly used loss function is the 𝐿2 loss (squared loss),

which is defined as follows [Goo20]:

𝑒(𝑖, 𝑗) ≔ |𝑟𝑖𝑗 − ̂𝑟𝑖𝑗 |2 (2.2.8)

Due to the quadratic loss, outliers (i.e. bad predictions) are much more penalized than by the

linear 𝐿1 loss in eq. (2.2.7).

12

2.2 Types

 Example 2.2.2: 𝐿2 as Function Composition

Formally, loss can be defined as:

𝑓 (𝑥) = actual(𝑥) − prediction(𝑥)

Therefore, 𝐿2 loss can be composed by 𝑞 ∘ 𝐿1, with 𝑞 being the quadratic function

𝑞(𝑥) = 𝑥2, as it is a quadratic form of 𝐿1 loss:

𝐿2(𝑥) = 𝑞(𝐿1(𝑥)) = 𝐿1(𝑥)2 = |actual(𝑥) − prediction(𝑥)|2

From a practical point of view, composition leads to abstraction and aids to make

ML more understandable for humans. This concept is especially useful within the

following practical chapter 3 of this thesis.

By combining the above-described mathematical building blocks, we can express a typical

objective function for an RS model to learn the best values for the embedding matrices 𝑈
and 𝑉 over the set of observed ratings 𝑆 with 𝑟𝑖𝑗 > 0 (in case of the initial 𝑅) in eq. (2.2.2)

[HKV08][KBV09]:

min𝑢∗,𝑣∗
∑
(𝑖,𝑗)∈𝑆⏟

Sum over obs.

(𝑟𝑖,𝑗 − 𝑢𝑖 ⋅ 𝑣𝑗)2⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑒(𝑖,𝑗)

+𝜆(‖𝑢𝑖‖2 + ‖𝑣𝑗‖2)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
Regularization

(2.2.9)

Minimizing the loss of reconstructing the interaction matrix only over the observed values

as formulated above comes at a cost: Without any regularization, the model would likely

fit very well to the supplied training interaction matrix 𝑅, but overall it would generalize

poorly for new (predicted) user-item interactions. Therefore, as formulated in eq. (2.2.9), the

additional cost to compensate is a regularization term, which is added to the error term 𝑒(𝑖, 𝑗).
The choice of 𝜆 in this term is dependent on the dataset and as a hyperparameter, it needs
to be fine-tuned. In general, this is a commonly used approach to prevent overfitting and

it allows the model (some) additional space to generalize. The model representation above

refers to an explicit feedback model, which for example has been used similarly during the

2009 public Netflix Prize competition’s best RS model for movie recommendations [KBV09].

For implicit feedback models, there are further considerations to be made which are handled

in section 2.2.3.2.

13

2 Recommender Systems

Minimizing the objective function in terms of the embeddings as in eq. (2.2.9) is typically done

using Stoachastic Gradient Descent (SGD), which is a common choice for ML models and

enables gradually updating 𝑢∗ and 𝑣∗ for each so-called epoch until convergence is reached.

Describing this central ML technique is out of this thesis’ scope and further details can be

obtained from [Agg+16, p. 100] and [Goo20] which algorithmically and illustratively explain

the process.

2.2.2.3 Summary

The key advantage of CF over CBF is to enable predictions on how likely a user wants to

interact with an item by utilizing existing interaction data from other users. This is in di-

rect contrast to CBF (as described in section 2.2.1), because with CF we are able to make

predictions for users with only few interactions, but not for new items that no one has ever

interacted with, where no collaborative information is available.

Moreover, as opposed to CBF, Collaborative Filtering has the advantage of producing more

diverse and less obvious recommendations by utilizing the other users’ (neighbours) feed-

back, too, instead of just considering a single user’s preferences in isolation [Agg+16, p. 140].

Hence, MF algorithms became very popular after their success has been established during

the Netflix Prize challenge [KBV09].

 Example 2.2.3: Importance of Diversity and Novelty

Consider the following scenario: Bob wants to watch a new movie on his favorite streaming

platform. Recently, he watched Star Wars I and Star Wars II, but also Matrix I. He liked both

movies. A CBF-based approach might recommend other movies with similar attributes (e.g.

“Science Fiction” and “Action”), they could even recommend Star Wars III and Matrix II. To
Bob, these recommendations are quite obvious. Do they really help Bob with his choice or do

they bore him and simply show what he already knows? By contrast, in a CF-based approach,

there are multiple users involved in the recommendation process. One of them is Alice, who

recently interacted with StarWars I, too, but also rated The Shawshank Redemptionwith 5 stars.

The system learns that Alice is similar to Bob and therefore, it recommends The Shawshank
Redemption to Bob. This is the more diverse recommendation. With a bit of luck, Bob will like

it – even though the movie itself is quite different! In other words: The CF system helps Bob

to expand his horizon, even though the system does not know about the fact that the movie is

out of his “comfort zone”.

14

2.2 Types

2.2.3 Hybrid: LightFM

There are multiple different approaches to combine CBF and CF. In this work, we focus on

the implementation of LightFM introduced in [Kul15], a hybrid content-collaborative model

that is used in productive systems. In the real-world, interaction data is often very sparse.

For instance, there are millions of products in a large online-shop, but a user only interacts

with a fraction of them. This sparsity makes it very difficult for a model to generalize well

[Goo18].

Therefore, the main motivation behind the project is to tackle the new user/item-problem

within such enterprise use-cases. This is also called the cold-start problem, which we faced

before (though it has not been named explicitly), at the end of section 2.2.1 as well as sec-

tion 2.2.2. It can either occur when a new user or a new item enters the system and is a

general challenge of RSs that is described more differentiated in the following section 2.3.1.

LightFM outperforms both pure CBF and pure CF approaches by combining the best of both

worlds: It uses Matrix Factorization with embeddings for CF as described in the previous

section 2.2.2, but instead of using plain user/item vectors as latent factors, metadata (i.e.

content features) is encoded within these embedding vectors [Kul15].

2.2.3.1 Embedding Metadata Features

The embedding of metadata is the essence of LightFM as it enables to feed metadata into a

classic MF approach. In the following step-wise example, let’s assume that the user Alice

from section 2.2.1 is defined by the following metadata:

Table 2.2.1: Alice’s Metadata Features

Feature Value Example Encoding

Gender Female (0 1)
Age Young Adulthood, 18 - 24 (0 1 0 0 0)
Preference Education (1 0 0)

Table 2.2.1 shows the feature type, value and the actual vector representation which is the

model’s input. For the “Representation” column, we performed some Feature Engineering:
The features are not fed into the model directly as raw values (e.g. the string “female”), but

they are rather preprocessed. In our case, we applied a process called one-hot encoding, which

15

2 Recommender Systems

is suited for representing categorical data [Goo20].4 The first row’s tuple of all possible values

is (𝑚𝑎𝑙𝑒 𝑓 𝑒𝑚𝑎𝑙𝑒) and therefore (0 1) translates to 𝑚𝑎𝑙𝑒 = 0 = 𝑓 𝑎𝑙𝑠𝑒 and 𝑓 𝑒𝑚𝑎𝑙𝑒 = 1 = 𝑡𝑟𝑢𝑒
(for simplified explanations, we focus on the binary gender case in this example). For the

second column, we also used a technique called bucketing by not describing the age of the

user directly but rather dividing it into a total of 5 categories so that we can once again

one-hot encode it. In Alice’s case, “Young Adulthood” is set to 1, which is the group after

“Childhood”. The decision which buckets to use is entirely up to the ML Engineer and highly

domain-specific. Analogously, the three preference categories (𝐸𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛 𝐶𝑎𝑠𝑢𝑎𝑙 𝐻𝑒𝑎𝑙𝑡ℎ) are one-
hot encoded.

In section 2.2.2.1, the Matrix 𝑈 describes all users’ latent factors. One row within this matrix

represents one user’s latent factors, which will be denoted as vector 𝑥𝑢 in the following. In

the bare MF model, no content information has been encoded into this vector. The model

needs to learn the semantics on its own by reconstructing the interaction matrix by 𝑈𝑉 𝑇 . We

want to change that and embed content information, too: Formally, each user 𝑢 has an own

set of metadata features 𝑓𝑢 from the complete user feature set 𝐹𝑈 , i.e. 𝑓𝑢 ⊂ 𝐹𝑈 describes one

specific user’s metadata [Kul15]. First, each of these features has its own latent embedding

vector 𝑒𝑈𝑗 of a specified dimensionality 𝑑 specifically assigned to user 𝑢. Second, we assume

that adjusting the vector 𝑢 by the sum of these latent vectors describes the latent user in total,

represented as 𝑞𝑢 [Ros16]5:

𝑞𝑢 = 𝑥𝑢 + ∑
𝑗∈𝑓𝑢

𝑒𝑈𝑗 (2.2.10)

In eq. (2.2.10), we clearly distinguished the latent user representation 𝑥𝑢 from the metadata

features 𝑒𝑈𝑗 of the user. In fact, in a LightFM model, everything is treated as features (or

metadata) to simplify the model, even the user/item representations themselves and thus the

equation becomes [Kul15]:

𝑞𝑢 = ∑
𝑗∈𝑓𝑢

𝑒𝑈𝑗 (2.2.11)

For items, the same approach is used to represent its metadata features 𝑓𝑖 ⊂ 𝐹 𝐼) [Kul15]:
4ML algorithms often require preprocessing and typically work with numerical data only.
5notation adapted from Kul15.

16

2.2 Types

𝑝𝑖 = ∑
𝑗∈𝑓𝑖

𝑒𝐼𝑗 (2.2.12)

In the example table 2.2.1, Alice would be described by the sum of the latent representations
of (Female, Young Adulthood, Education). Often, it can be problematic that the tuple is

not unique to Alice, as it can describe any user with the same three attributes similarly. To

distinguish between users/items and to offer more personalized recommendations, the fol-

lowing approach is used: An indicator variable is introduced which uniquely identifies each

user and each item. This identifier is one-hot encoded and fed into the model as a feature

on a per-user/per-item basis. The indicator is the feature that makes LightFM reduce to a

classic MF model (traditional CF) in cases where no content information is given or avail-

able. However, in cases where indicator features are missing and only content information

is provided, the model does not fallback to a classic content-based model. This is because

LightFM always works by decomposing the interaction matrix into collaboratively available

factors. Therefore, LightFM is always based on CF, with or without indicator variables and

with or without content features. [Kul15].

Figure 2.2.5: Matrix Factorization and Factorization Machine training data

Source: [Lun20]

By approximating the preferences as a sum of latent vectors, LightFM can be seen as a spe-

cialization of a Factorization Machine (FM). In such a machine model, interactions between 𝑛

17

2 Recommender Systems

variables can be estimated [Lun20] (see fig. 2.2.5) and it is not restricted to the more specific

form of user-item feature variables in case of the LightFM model. Because most RSs do not

need an 𝑛-way interaction model, LightFM’s restriction aids the simplicity [Kul15] which is

a good trade-off for the versatility of a fully-featured FM.

2.2.3.2 Implicit Feedback Specialization

In eq. (2.2.9), we built our model based on the explicit feedback matrix 𝑅 from eq. (2.2.2).

However, in production systems, implicit feedback is often more widely available [HKV08]

and considering observed explicit ratings only ignores the fact that missing entries poten-

tially carry useful information [Ste10] [Kul18] [Lun20]. The MF model in eq. (2.2.9) did not

particularly handle unobserved entries other than through a naive regularization term. In

the definition, we added this term to generalize better and not overly fit the embeddings to

the trained (observed) data only, i.e. we penalized the model’s ability to adjust “too well”

to the training data. We therewith indirectly assumed that the unobserved entries do not
correlate with the users’ preferences, which rarely holds true. For instance, if Alice likes a

learning-app she is probably more invested to rate the app with 5 out of 5 stars. Often, users

leave ratings because they strongly like (or dislike) a particular item [Ste10]. Users choose
to do so. In reverse, this means that if ratings are not given at random, ratings can not be

missing at random. Therefore, even though the exact mechanics behind unobserved entries

are unknown, they should rarely be excluded from the model’s training. In fact, unobserved

entries can carry useful information just as their counterpart [Ste10] [Kul18].

With implicit feedback, we assume that observed entries indicate a degree of confidence

that a user likes a particular item, without the need of an explicit negative feedback mecha-

nism. This dramatically improves the wide availability of interaction data over explicit data,

where a typical user only rates a few items at most [Ste10]. For instance, if Alice opens a

learning-app ten times a day, she probably likes the app, even without her explicitly stating

it. Furthermore, it means that she is probably less interested in other applications that she

only opens once in a month, as every user has a limited time-attention span. By incorporat-

ing the observed and unobserved entries in the model directly, LightFM is a suitable model

for implicit feedback data [Kul15] [Kul15, see eq. 2] and as such, the objective is not to pre-

dict a rating, but rather to learn how to rank based on the confidence of the interaction data

[Ros16], which arguably increases if a user often interacts with a particular item.

18

2.2 Types

2.2.3.3 Summary

Ultimately, combining the latent vectors makes it possible to jointly learn similarities be-

tween users, items and their metadata features, which leads to improved predictions in both,

warm- and cold-start as well as high- and low-sparsity scenarios [Kul15]. Simultaneously,

the model allows room for more comprehensive interpretations in the latent feature space

than classic CF models where no metadata is embedded and semantic information is un-

labeled (no input feature vectors are given). For instance, if Alice is the dominating user

of educational apps, the embedded feature vectors of “Education” and the representation of

herself (see eq. (2.2.11)) will be close together (user-feature to user). Likewise, if applications

from the categories “Education” are used by many “FH Aachen” students, the model will

learn that they are similar (feature to feature). This relationship is illustrated in fig. 2.2.6, as

a concretization of fig. 2.2.2 from the preliminary section 2.2.

50.75°, 6.00°50,75°, 3.00°

Scientific

Cultural

AliceEducation FH Aachen

PrintenWaffels

Bob

Figure 2.2.6: Users/Features represented in a 2D embedding space

19

2 Recommender Systems

2.3 Challenges

In the following, four of the most important challenges for the implementation of RSs are

introduced. The focus is on Hybrid RSs, but also pure CBF and CF approaches are considered

where appropriate to deepen the understanding. The challenges are ordered in a way that

each challenge leads to another (the arrow reads as “requires”):

Tackling Cold-Start ⟹ Feature Engineering ⟹ Fairness ⟹ Explainability

2.3.1 Tackling Cold-Start

As already briefly introduced in section 2.2.3, the cold-start problem poses a serious chal-

lenge to RSs. It occurs whenever sufficient feedback through interactions is missing (or

only few interactions exist) and therefore no accurate or reliable recommendations can be

made [Bob+11]. One typically differentiates between two types of cold-start [Bob+11, p. 2]:

1. New item cold-start: A new item enters the system. When using a CBF-based or

hybrid RSs, the existing attributes (or features) of the item can be used: If the user

has interacted with an item with similar attributes in the past, the new item might be

similarly liked by the user. Therefore, CBF-based RSs take advantage of the existing

per-attribute preferences to make recommendations even for completely new items

with no interaction history [Agg+16]. To the contrary, in pure CF, no metadata about

the item is involved. Therefore, it becomes hard to make recommendations for items

that no user has ever interacted with (see remark at the end of section 2.2.2), because

this also means that there is no collaborative information available.

2. New user cold-start: A new user enters the system. Here, CBF-based approaches are

ineffective because at the very initial state, a user did not interact with any item. There-

fore, no item preferences are known at this time. CF is also equally ineffective to

handle new users, since the user is not known during the model’s training phase or

because of missing interactions, no inference is possible [Goo18]. Instead, this type

of cold-start is manageable by using a hybrid RS as introduced in section 2.2.3: If the

user enters only a few information about herself/himself (user features), the system is

able to use the collaborative information (by relying on the metadata of similar users).

With LightFM, this works without the user being present during training, because the

metadata features explain part of the user/item structure (see section 2.2.3).

20

2.3 Challenges

The most drastic form of the cold-start problem is the complete lack of interactions (also

called new community problem) [Bob+11] which takes place at the initial state of the recom-

mender system itself. To collect initial information, users can e.g. be encouraged to interact

with (random) items that are suitable based on domain-knowledge [see also Agg+16, pp.

16, knowledge-based RS]. In the end, all ML-based models need training data to learn with,

which is why the cold-start problem is still one of the biggest challenges of RSs. Additionally,

the training features needs to be carefully prepared, leading us to the next challenge.

2.3.2 Feature Engineering

Particularly important for a RS’s ML model to perform well is the collection and selection,
cleaning and preparation of data to use as inputs for training the model. This process is

commonly called Feature Engineering [Ren19]. We engineered features “on-the-fly” in sec-

tion 2.2.3, table 2.2.1 (bucketing and one-hot encoding). However, real-world feature engi-

neering is a complex and significantly time-consuming task [Ren19], with surveys indicating

that data scientists spent up to 80% of their time on it [Pre16].

For a hybrid RS, feature engineering itself is not only a regular process but also a challenge.

Content features for items and users are needed and their quality are the foundation of good

(especially cold-start) recommendations. The basic steps of feature engineering are as follows

[Goo20] [Ren19]:

1. Collect and select features: Collect which data is/will be available to the recommender

system. Typically, a person with the necessary domain knowledge needs to decide

which features are important to capture, e.g.: Is the user’s age important for the pre-

dictive power of a model? Does it make sense to use the item’s country?

2. Clean the data: Without cleaning the data, themodel potentially learns based on a false

premise. Therefore, invalid/incomplete/unavailable information needs to be filtered

out or handled accordingly.

3. Prepare the data for inputting to the model: Data can only rarely be used as model

input without a conversion. For example, the raw value of the user’s age does not

necessarily make the model more expressive. Especially in smaller datasets, bucketing

into semantic age groups is more suitable (as done in section 2.2.3) for the model to

generalize well. In general, the feature values need to be numeric so that they can be

21

2 Recommender Systems

used as a feature vector input [Goo20]. Non-numeric data such as the item’s country

needs to be converted (for example via one-hot encoding). There are many other data

preparation techniques which are out of this thesis’ scope. They are described in a

practical approach in [Ren19] which for instance describes how to handle outliers or

how to extract dates.

Utilizing user and item features is typically an important step to mitigate the cold-start prob-

lem as described in the previous section 2.3.1. To help with the user cold-start problem, users

can be asked to enter personal information in an on-boarding process during registration,

where it is mandatory to enter profile information such as age, bio or favorite activities. The

RS engineer has to find a compromise between the predictive power of the information and

the amount of entered data: Comprehensive information can be collected and converted to

useful features and the model can potentially get more expressive to deliver novel recom-

mendations [Agg+16, p. 233]. On the other hand, if the system asks the user to enter a lot

of information for the registration to be completed, the user could easily get frustrated and

even quit the application, thus resulting in loss of a potential customer. Moreover, each fea-

ture adds an additional layer of complexity to the model and practically to every step of RS

engineering.

For this reason, feature engineering is a deep- and wide-ranging challenge for RSs, since

finding the optimal balance between feature-usability and amount of information is non-

trivial and requires a broad spectrum of experiments as well as a deep technical and domain-

specific knowledge, let aside the psychological perspective of mitigating the user’s potential

negative mindset (such as privacy concerns) for instance by a transparent data protection

policy and/or a motivational User Experience (UX) design. The choice and preparation of

features implies ethical consequences, which are described in the next section.

2.3.3 Fairness

Whenever a RS makes a recommendation, it should be as fair as possible. Even more general,

an ML model should be completely objective. This arises the question of what the definition

of fairness is in the context of ML and how to identify it. One possible interpretation is that

fairness is theminimization (or ideally elimination) of bias. However, in the world ofML, bias

is a broadly used term that can have many different meanings [see HDB20, for a selection].

In the following, we therefore focus on popularity bias as an example for a specific kind of

22

2.3 Challenges

Figure 2.3.1: Inconsistent recommendations through popularity bias for a diverse user

Source: [Abd+19]

bias that happens during the RS learning stage and is in fact manifested in many RS models

themselves, which means that it usually is not directly caused by humans. As such, it can be

seen as learning bias (also called inductive bias).6

Popularity bias has been extensively analyzed in [Abd+19]. This bias leads to items that are

less popular being less recommended, while popular items preserve their position and are

recommended all over again, see fig. 2.3.1. For users (as well as other stakeholders), this can

be unfair and problematic on two counts that are highly correlating [Abd+19, pp. 1 ff.]:

1. Expectation vs. Recommendation: Users whomight have interest in less popular items

(“niche group”) or a diversified opinion regarding popularity (“diverse group”) can

never be fully satisfied and only receive popular recommendations.

2. Lack of Diversification: The RS’s environment will be dominated by popular items

with certain properties. In a exemplary marketplace, (newcomer) sellers will try to

imitate the popular products and their creative limits are bounded to the market lead-

ers. Users also do not have the possibility to find new innovations easily due to the

pre-dominance of popular itemswhich are recommended (see also example 2.2.3 where

we provided a look upon diversity for CBF and CF). From a socioeconomic perspec-

tive, merchants who sell popular products (market-dominating brands) will always be

preferred so recommendations of smaller sellers with niche products do never have

the chance to enlarge their customer base even though their products might be much

more innovative or personalized to the user [Abd+19].

Overall, while the challenges of fighting unfairness are often not completely solvable, estab-

lishing an awareness that specific types of (human) biases exist makes it possible to identify

6Terminology proposals and information regarding the ambiguity of bias can be read in [HDB20].

23

2 Recommender Systems

them and react accordingly while developing a RS [HDB20] [Goo20]. To support the imple-

mentation of fairness in an organization, one could for instance introduce a dedicated role,

i.e. an independent person who supervises and exposes potential ethical flaws and biases

within the system. Striving for an independent supervisor is important because the person

who is responsible for the technical realization of system might be unconsciously biased,

which could depend on various factors (e.g. only concentrating on optimal model evaluation

results and ignoring ethical flaws of the model).7

The next challenge of explainability is closely coupled to fairness, since users will ask for

explanations when they e.g. suppose that the system is biased in any direction by receiving

unfair recommendations [GF17].

2.3.4 Explainability

Explainable AI is an emerging field [KRK18] that is also manifested in regulatory bodies’

protection guidelines such as the EU’s “Right to Explanation” [GF17]. Humans need explana-

tions for recommendations to trust their RS environment [Agg+16, 232 ff.] [KRK18] [GJG14].

Providing explanations also means that the user is more likely to accept the recommenda-

tion [KRK18].

Moreover, as analyzed in the human-computer study [GJG14], explanations can serve a vari-

ety of goals besides trust, most popularly among them: Satisfaction (the user is satisfied with

the recommendation and enjoys using the system) Transparency (the user and others can re-

trieve insights about the RS algorithms to better understand how they work), Efficiency (the

user needs less time to perform a task when reading the explanation), Effectiveness (the user

makes better decisions when completing a task based on the explanation), Persuasiveness (the
user’s behavior can be changed by proposing new solutions) [GJG14].

Establishing trust is – as a multi-faceted goal – very difficult to measure and estimate [GJG14,

378 f.], but a main driver behind long-term users which should be considered during the

whole RS development process. Interestingly, trust and usefulness are not complemen-

tary to each other, because the user probably trusts obvious recommendations (see exam-

ple 2.2.3), but nonetheless they do not enable the user to discover a broad, diverse spectrum

of items [Agg+16, p. 233].

7see also [HDB20] and [Goo20, chapter “ML Engineering - Fairness”]

24

2.3 Challenges

Transparency is divided in perceived (subjective) and real (objective) transparency. As the

former concentrates on making the transparency understandable to the user (sometimes not

being in compliance with the underlying RS algorithms), the latter describes the internals

of the RS accurately, but is more difficult to understand (RSs are complex, highly technical

systems) [GJG14]. Therefore, we concentrate on the perceived transparency, though it is

important to provide truthful explanations for ethical reasons, but also as users otherwise

lose their trust in the system.

The following has been found out regarding the dependency of the goals in [GJG14]: The

goals transparency and effectiveness increase (long-term) user satisfaction. Making the user

happy is considered is a significant contributor to trust [GJG14], thus creating a positive

feedback loop which enables content long-term users that are considerably easier to persuade
to make behavioral changes (e.g. changing buying behavior).

When it comes to choosing the most suitable explanation type for specified goals, there are

are multiple dimensions to consider, some of them have been extracted and are described in

the following [GJG14]:

1. Privacy Level - personalized vs. public: Recommendations can either be justified by

personalized explanations based on private user-information such as “This book is

recommended because you liked A Song of Ice and Fire” or based on publicly available

information such as “This book is recommended because it has an average rating of

4.2 stars by 7300 users”

2. Information Type - content vs. collaborative: The explanation interface either presents

content information (e.g. tag cloud and related (liked) items) or collaborative informa-

tion (e.g. average rating, similar user ratings). A special type is the use of performance

data about the recommendation itself, such the recommendation confidence which is

the probability the model has for the item to be recommended, i.e. how likely it will

match the user’s taste.8

3. Presentation Type: There aremanyways to display explanations, some example classes

include text-driven (text-explanation or word-cloud), diagram-driven or graphic-driven
(e.g. pie chart) and tabular.

8see table 2 GJG14, for more explanation interfaces.

25

2 Recommender Systems

Consequentially, transparent explanations depend on the used algorithm that provided the

recommendation. CBF makes it easier to use content-based information than CF as these are

already provided by the model itself (see section 2.2.1). In pure CF, this type of information

needs to be extracted outside of the RS, e.g. by collecting information about the recom-

mended items’ content data from another service. On the other hand, CBF is limited when it

comes to collaborative information such as the “neighbourhood” of similar users/items. This

is where the strengths of CF are, as shown in fig. 2.3.2 where a personalized explanation can

be provided by including the similar users’ ratings (the “neighbourhood” for a specific item).

Similarly as before, a hybrid RS comes with the advantage that two sources of information

can be utilized (and correlated) for the explanation, often without the need of retrieving ad-

ditional data such as tags from another external service (i.e. a service that is outside of the

RS environment). For instance, when using LightFM, we can estimate the similarity of two

items by calculating the distance between their features’ factors [Kul15, p. 6] (e.g. by using

cosine similarity). A recommendation which is explainable by feature/tag similarity is e.g.

“We recommend you It written by ’Stephen King’ because you recently watched a ’Horror’

movie” in which the RS learned that ’Horror’ and ’Stephen King’ are closely related to each

other.

Recommended to you because similar neighbours liked it:

Rating Amount
0
0
9

42
13

Figure 2.3.2: Example interface for neighborsrating, adapted from [GJG14]

As there are many possibilities to design an explanation interface, fulfilling one goal may

result in a trade-off between others [GJG14]. For instance, fig. 2.3.2, does not necessar-

ily show a suitable solution for user satisfaction, as it has been found that this interface

(namely neighborsrating) does not satisfy the user, although it offers a good level of trans-

parency [GJG14, p. 376]. This is can be linked to a) the user failing to understand themeaning

of similar users [GJG14] or b) the relatively complex presentation which might confuse the

user by showing “too much information”. To alleviate b), a relatively simple solution is to

26

2.3 Challenges

exchange the presentation type to a diagram, thus making the data more easy to understand

(and likely more visually appealing). This observation is also backed by [GJG14, p. 376],

which shows a rise in the user’s satisfaction just by using a bar chart9 instead.10

Figure 2.3.3: Example tag cloud for a movie recommendation explanation

Source: [GJG14]

Using a well-known tag cloud11 explanation (see fig. 2.3.3) is considered to be highly effective

in transparently showing how internals of the RS came to the conclusion that the recom-

mendation is suitable, even though users needed the most time to process this type (worst

measured efficiency), they were most satisfied with the personalized variant of it [GJG14].

Summarizing, choosing the right explanation interface depends on many factors (such as

available private/public data, information type and presentation type), which should be care-

fully weighted dependent on the set goals. Ultimately, to help engineers with setting up a

proper explanation type, [GJG14] proposes guidelines which can be summarized to the fol-

lowing three points:

1. Use domain-specific content to increase effectiveness.

2. Use familiar explanation types to improve the user understanding, which leads to

higher transparency further contributing to long-term user satisfaction.

3. Prefer transparency and effectiveness over efficiency.

9Diagram which uses one bar per star rating on the x-axis and the amount of users on the y-axis.
10further reading available on pp. 374 ff. GJG14.
11Visualization where keywords are arranged alphabetically, with the font size indicating relevancy.

27

2 Recommender Systems

2.3.5 Summary

In this section, we examined a chain of challenges that we consider to have an enormous

impact on the design of recent modern RSs [Fal19]: Tackling the cold-start problem (sec-

tion 2.3.1) is necessary to recommend straight away from the start if the user or item is

completely new to the system. The challenge of proper feature engineering (section 2.3.2)

is a direct consequence of that; hybrid solutions that make the cold-start problem (more)

manageable often require an enormous amount of work of this essential ML technique. This

is followed by the considerations on fairness (section 2.3.3) that are practically relevant in

every engineering step, but especially when decisions on specific features (e.g. during feature

engineering) and/or training data are made. In the end, with explanations (section 2.3.4), we

not only discovered one of the recent directions of ML and RSs, but also a technique that

makes recommendations much more transparent to the user, thus ensuring the important

goal of long-term user satisfaction.

28

3 Reciprocal Recommender Systems

In this chapter we first introduce Reciprocal Recommender System (RRS) and provide a for-

mal definition that needs to be fulfilled by any RS to make reciprocal predictions (section 3.1).

Subsequently, we describe the specifics of RRSs. This is followed by a comparative overview

between RRSs and traditional RSs in section 3.2.

Afterwards, we are able to contextualize the previously described challenges in section 2.3 for

RSs in section 3.3 for RRSs. Furthermore, we use these to have a guideline that can be used to

derive the requirements and the objective for a multi-purpose RRS framework (section 3.3.2).

3.1 Introduction

After reading chapter chapter 2, one could assume that, to make effective user-to-user rec-

ommendations, it would be sufficient to trivially exchange items with users in our definitions.

This holds true for recommendations where the other user has conceptually no influence in

the outcome of an interaction. For instance, following a user on Twitter does not require

any consent [Pal+20, pp. 2-5]. To the contrary, the “follow interaction” on Instagram is more

sophisticated:

• Following a user with public profile: No consent required, allows the user to follow

straight away. The interaction is always successful.

• Following a user with private profile: The user with the private profile needs to accept

the follow request for the interaction to be successful.

In fact, whenever the other user’s consent is required in a system, the reciprocity becomes

important. As it now becomes clear, the root of reciprocal recommendation and one approach

to differentiate between RSs and RRSs is once again: interactions. Furthermore, RRSs are as

an extension thereof inherently more complex than traditional RSs [Pal+20], as they require

both parties to accept in order to be successful.

29

3 Reciprocal Recommender Systems

The concept of a Reciprocal Recommender System has been introduced by Pizzato et al. in the

year 2010. At this time, only very few sources highlighted the importance of reciprocity. The

research in this field was only sparse [Piz+10a], with many sources focusing on user-to-item

recommendations only – even though the need for reciprocal recommendations has always

been existent, since the beginning of RSs and human-to-human online interaction [Pal+20].

The few sources that also covered aspects of reciprocity were only very basic [Piz+10a], e.g.

outlining that implications such as “𝐴 likes 𝐵 ⟹ 𝐵 likes 𝐴” generally do not hold true,

being more on a psychological rather than technical level.

The field of RRSs is still emerging. Very recently in mid 2020, a snapshot paper has been pub-

lished by Palomares et al. in [Pal+20] which provides a bird’s-eye view over the state-of-the-

art RRS landscape from an algorithmic and scientific perspective. This is useful throughout

the whole engineering process of an RRS, for instance to efficiently identify the broad spec-

trum of opportunities and their success probabilities beforehand – in one view.

3.1.1 Definition

Pizzato et al. first defined the RRS formally and established a common wording to describe a

RS of this specific type. Interestingly, in the first definition, the term “item” is used to describe

the human counterpart which is to be recommended to the other human user [Piz+10a]. To

be as clear as possible, we define the user whose intent is to receive recommendations as

the subject, and the recommendation as the object (put into grammatical context - “subject

receives object recommendation”). This is a well-established convention [Pal+20], though as

pointed out in the common literature, one can view the problem symmetrically, because all

users are potential recommendation objects and recommendation subjects [Agg+16, p. 443].

Initially, we introduce a user-to-user 𝑅𝑆 that works in a non-reciprocal way [Pal+20, p. 5]

[Piz+10a, p. 5]. Note how this also represents a traditional user-to-item RS, since we only

consider user 𝑢’s preferences towards the objects 𝑣 and 𝑤 (given by the preference function

𝑝), with 𝑅 representing the list of recommendations:

𝑅𝑆(𝑢) ≔ {𝑣 ∶ 𝑝(𝑢, 𝑣) > 𝑝(𝑢, 𝑤) ∀𝑣 ∈ 𝑅, ∀𝑤 ∉ 𝑅} (3.1.1)

The outcome is a set of optimal objects to be recommended 𝑣 ∈ 𝑅 that fit to the preferences

𝑝(𝑢) unidirectionally.

30

3.1 Introduction

For reciprocal recommendations, we also need to consider the preferences of the object 𝑣 ,
which can be achieved by combining both RSs [Pal+20, p. 5]:

𝑅𝑅𝑆(𝑢) ≔ {𝑣 ∶ 𝑣 ∈ 𝑅𝑆(𝑢) and 𝑢 ∈ 𝑅𝑆(𝑣)} (3.1.2)

The 𝑅𝑅𝑆 in eq. (3.1.2) considers the preferences of both users – therewith, the subject 𝑢 can

receive a recommendation that is reciprocal, i.e. also in the interest of the recommended

object. More extensively, a typical 𝑅𝑅𝑆 often resolves to the following [cf. Pal+20]:

𝑅𝑅𝑆(𝑢) ≔ {𝑣 ∶ 𝑟𝑝(𝑝(𝑢, 𝑣), 𝑝(𝑣, 𝑢)) > 𝑟𝑝(𝑝(𝑢, 𝑤), 𝑝(𝑤, 𝑢)) ∀𝑣 ∈ 𝑅, ∀𝑤 ∉ 𝑅} (3.1.3)

Both users’ preferences are aggregated by the reciprocal preference function 𝑟𝑝 as denoted

in eq. (3.1.3).1 This key concept is illustrated in fig. 3.1.1, which directly leads us to the next

section, describing the process of preference aggregation in more detail.

Figure 3.1.1: Conceptual view on RRSs

Source: [Pal+20]

1Sometimes also referred to as 𝜙 in literature [Pal+20, p. 5]

31

3 Reciprocal Recommender Systems

3.1.2 Specifics

In this section, we highlight the important specific properties in the field of RRSs.

3.1.2.1 Preference Aggregation

Whenever we calculate two preference scores as formulated in eq. (3.1.2), it becomes neces-

sary to fuse the recommendations in order to get the final reciprocal ranked result of 𝑅𝑅𝑆(𝑢),
which can e.g. be an ordered list for the top 𝑘 reciprocal recommendations for 𝑢. Therefore,
we specify that the preference function 𝑝 outputs a numeric score 𝑠 in the range of 0.0 (min.

affinity) to 1.0 (max. affinity) describing the likelihood that a user 𝑢 will like another user 𝑣 .
There are different techniques to accomplish the aggregation of the preferences. Historically,

for RRSs, one of the first ideas was to use a simple sum of weighted scores [Piz+10a, p. 6],

with 𝑠 denoting the preference scores of the users:

𝑟𝑝𝑆(𝑠𝑢 , 𝑠𝑣) ≔ 𝑤𝑢𝑠𝑢 + 𝑤𝑣 𝑠𝑣 (3.1.4)

The weights are used as an option for customizability. Setting both 𝑤𝑢 and 𝑤𝑣 to a constant

(such as 1) will grant true reciprocity that handles the subject’s and the object’s preferences

equally. Hence, using unequal weights will increase imbalance and lessen reciprocity. For

instance, setting 𝑤𝑢 higher than 𝑤𝑣 will prioritize the subject’s preferences. This is useful

when the subject wants to retrieve recommendations that are “more personalized” [Piz+10a,

p. 6], even though it might lessen the chance of sustainable success with the object (successful

reciprocal recommendations require consent).

Nevertheless, linear functions such as in eq. (3.1.4) are often too simple to properly capture

mutual interests, because ignoring the discrepancy between the preference scores often is

a fundamental disadvantage, e.g. if 𝑠𝑢 is significantly lower/higher than 𝑠𝑣 . In reciprocal

settings, it is more appropriate to satisfy both users’ preferences sufficiently [Pal+20]. Addi-

tionally, it is often wished that the function always inputs and outputs a value in a specified

range, e.g. [0, 1] × [0, 1] → [0, 1].
For this reason, other aggregation functions have been studied, suggesting that the harmonic
mean often is the most suitable choice over the other Pythagorean means (arithmetic and

geometric) [Pal+20] [NP19a]. The harmonic mean is adapted as follows for 𝑟𝑝:

32

3.1 Introduction

𝑟𝑝𝐻 (𝑠𝑢 , 𝑠𝑣) ≔
2

𝑠−1𝑢 + 𝑠−1𝑣
= 2

1/𝑠𝑢 + 1/𝑠𝑣
= 2 𝑠𝑢 𝑠𝑣

𝑠𝑢 + 𝑠𝑣
(3.1.5)

The harmonic mean as formulated in eq. (3.1.5) proved to be useful because of its property

to output a result closer to the minimum of its input values. This enforces that the smaller

value has a greater influence over the score [NP19a], i.e. it penalizes the discrepancy between

the users’ preferences. The mutual interest must be manifested in the aggregation function,

because the success of recommendations depend on it (see table 3.2.1).

3.1.2.2 Single-class vs. Two-class

In some sources, RRSs are separated into two types that are found in different recipro-

cal applications (also called Reciprocal Environment (RE)), single-class RRSs and two-class
RRSs [Pal+20, p. 7]. Table 3.1.1 distinguishes between the two: In the former, users are not

separated at all (commonly found in social network REs or on skill-sharing platforms) and

in the latter, users are divided into two sets (commonly used in recruiting REs).

Table 3.1.1: Classes of RRSs

Type Description Environment

Single-class Users are in one homogeneous set Dating, Social Networks, Skill-
Sharing (e.g. Learning/Research)

Two-class Users are divided into two disjoint sets Heterosexual dating, Recruiting

More formally, in a single-class 𝑅𝑅𝑆(𝑢) as defined in eq. (3.1.2) with 𝑢 ∈ 𝑈 any user 𝑣 ∈ 𝑈 ⧵{𝑢}
can potentially be recommended. Opposing, in a two-class RRS, the user set 𝑈 is divided into

two disjoint sets 𝑈1 and 𝑈2 (𝑈1 ∩ 𝑈2 = ∅) [cf. Pal+20, p. 6 ff.].

Table 3.1.1 shows that “dating” is present in both types, but a two-class RRS is more restric-

tive in this environment, because it only enables strictly heterosexual recommendations (e.g.

male and female set). To the contrary, in a single-class RRS, users are all in one set and non-

binary dating becomes possible, too – without per se excluding heterosexual/binary dating.

Concluding, the choice between single- and two-class RRS is highly dependent on the specific

use-case and the RE.

33

3 Reciprocal Recommender Systems

3.1.2.3 Symmetric vs. Asymmetric Interaction

For RRSs, we define two different types of interactions (cf. section 2.1):

Table 3.1.2: Types of Interactions for RRSs

Type Example Example SNS

Symmetric Friend/Follow request, Ask for date Facebook, OkCupid, Instagram
Asymmetric View profile, Like, Subscribe/Follow Twitter, YouTube, Instagram

As shown by the examples in table 3.1.2, for symmetric interactions, consent is needed and

the interaction takes place on both sides (“blocking” request and response). In asymmetric

interactions, the user can perform an interaction without any consent of the other party.

This is analogous to the concept of asymmetric (e.g. Twitter) and symmetric Social Network

Sites (SNSs) (e.g. Facebook) described in [Pal+20, p. 19]. Consequentially, a SNS which solely

consists of asymmetric interactions (pure asymmetric SNS) does not rely on reciprocity. In

such a network, the user can simply interact (such as like, view and follow) anyone, without

needing their prior consent. In the reality though, as already shown by the Instagram exam-

ple in section 3.1, a pure asymmetric or symmetric SNS does rarely exist: As soon as a user

wants to contact another user (e.g. by sending a chat message), she/he expects a response

(communication must be reciprocal). Therefore, if the system’s objective is to maximize the

likelihood of chat message responses, it is advisable to use a reciprocal RS. By following this

logic, RRSs are a more fitting choice for SNS as long as they also have at least one symmetric
interaction to consider, or alternatively, if users have a strong tendency of wanting to be

“followed back”.

It has been found that inferring user preferences from interactions is more effective than

explicitly asking the user for preferences about their counterpart [Ake+11, p. 1]. Preferences

change over time. Thus, asking users to explicitly enter them is more likely to result in out-

dated information, impairing the precision of recommendations. Therefore, both asymmetric

and symmetric interactions can be used as implicit feedback for user preferences.

Regarding feedback towards liking other users, symmetric interactions are more explicit for

both sides (the sender and the receiver of the interactions). For instance, if Bob sends a friend

request to Alice and she accepts it, which can be seen as a clear sign of sympathy and there-

with positive reciprocal feedback signal. Therefore, in the literature, symmetric interactions

are commonly also called Expression of Interest (EoI) [Piz+10a] [Pal+20] [Ake+11].

34

3.2 Summary: Comparison to traditional RS

3.2 Summary: Comparison to traditional RS

Summarizing, table 3.2.1 highlights some of the most notable differences of RRSs as opposed

to traditional RSs [cf. Piz+10b, p. 2] [cf. Pal+20, p. 7] [see also Agg+16, p. 443].

Table 3.2.1: Comparison: RSs vs. RRSs

Property Traditional RS Reciprocal RS

Entities Users are the subjects and items are
the objects.

Users are the subjects as well as the
objects.

Interactions Users are proactive (senders of inter-
actions).

Users are either proactive (senders of
interactions) or reactive (receivers of
interactions).

Success The recommendation is successful if
the user responds positively to it.

The recommendation is successful if
both users respond positively to it
(consent).

Availability Persistent: Usually multiple items
are available to be recommended to
multiple users.

Temporary: In some scenarios users
become unavailable to others after a
specific event and are not open to be
recommended.

Distribution Imbalanced distribution of recom-
mendations does not have direct so-
cial consequences.

Balancing recommendations is par-
ticularly important and all users
should be treated equally.

In the following, the different properties of table 3.2.1 are explained in more detail, one para-

graph per explanation/row.

The entities within a RS describe the participants of the system and their respective roles. As

shown in section 3.1.1, a Reciprocal RS requires a human (object) which will be recommended

to the human (subject). To the contrary, in traditional RSs, an item is recommended to a hu-

man subject. However, it has to be noted that there are also Non-Reciprocal RSs which have

the purpose of connecting two users to each other, but which do not require reciprocity (see

eq. (3.1.1) alone). For instance, as introduced in section 3.1, this could be applicable for the

asymmetric SNS Twitter, where users can follow other users without any consent [Pal+20].

For interactivity, users in a RRS can generally be divided into senders of interactions (who act

proactively) and receivers of interactions. Moreover, for symmetric interactions, a receiver of

an interaction has the possibility to react accordingly (e.g. “accept” or “deny” friend request),

35

3 Reciprocal Recommender Systems

as also explained in section 3.1.2.3. In contrast, RSs only have proactive users who engage

with items to feed the system’s input [Piz+10b, 2 ff.].

In RRSs, a recommendation is successful if both parties respond positively to it. Otherwise,

the reciprocity of the recommendation is not given (e.g. single-sided liking). Especially, in

RRSs, for success, the user knows that his/her counterpart needs to agree. For this reason,

the aggregation of preferences as described in section 3.1.2.1 becomes inevitable. Oppositely,

in a traditional RS, success is solely determined by the acceptance criteria of the user who

receives the recommendation [Piz+10b, p. 2].

In a traditional RS, multiple items are persistently available to be recommended to multiple

users (many-to-many cardinality) – typically without any constraints, even after there were

multiple successful interactions with the recommendations. However, in a Reciprocal RS,

recommendation candidates can possibly become unavailable after a successful recommen-

dation has taken place (e.g. in dating) [Pal+20].

Lastly, an important difference for the distribution of recommendations within RRSs is that

users have a limited attention span and therefore can not be recommended indefinitely (see

“Availability” characteristic above) [Piz+10b]. On the other side, it should be avoided that a

user does not receive any recommendation at all, as it leads to high frustration and users quit-

ting the participation (see section 2.3.1). Therefore, balancing the recommendations equally

is important. For traditional RSs, this is usually not a major problem with direct social con-

sequences, as the objects are not humans.2 Moreover, the items are typically either inex-

haustible resources (e.g. applications) or provided on a supply and demand basis, which

means that they can be reproduced (e.g. fashion products).

For both types of RSs, non-reciprocal and reciprocal, “rich get richer and poor get poorer”

effects should be avoided as they lead to least diversified recommendations (see section 2.3.3).

2Note that humans are nevertheless indirectly involved, i.e. as the owner of objects (e.g. retailers of products).

36

3.3 Analysis of Requirements

3.3 Analysis of Requirements

In the following, we analyze the requirements for engineering a Single-Class RRS that is

suitable to be used in SNS scenarios such as online dating, e-learning and skill-sharing.

In this thesis, we focus on human-to-human recommendations and do not want to concep-

tually draw borders between users (e.g. through separation by gender) for our recommen-

dations. Thus, we focus on a homogeneous single-class RRS, which we consider as the more

generalized class of a RRS. Interestingly, the single-class type received much less attention

in the past years, which is (likely) explainable by the binary predominance of heterosexual

dating and recruiting use-cases [Pal+20, p. 6 f.]. It is notable that the single-class approach

does not restrict the system to consider must-have criteria; filtering techniques can be used

to only consider humans that are relevant (compatible) to each other, i.e. fulfilling specific

user preference requirements such as specific gender, age range or specific interests.

3.3.1 Challenges and Difficulty

Feature
Engineering

Cold-Start

Fairness

Explainability

Figure 3.3.1: Comparison of the complexity with RRSs in mint and traditional RSs in black

37

3 Reciprocal Recommender Systems

With Tackling Cold-Start, Feature Engineering, Fairness and Explainability, four general

challenges that we consider especially relevant for RSs have been introduced. These apply

to RRSs, too, but due to the specific properties (as outlined in section 3.2), accomplishing the

goals becomes more complex: By reweighing them accordingly in the context of RRSs, we

are able to better estimate their implementation effort. For illustration purposes, the spider

chart fig. 3.3.1 provides an overview for each goal’s approximated difficulty. The diagram

shows the traditional RS baseline in black and the RRS in mint.

In summary, for RRSs, all of the four key goals require a remarkable amount of effort as

compared to RSs due to the always prevalent complexity-increasing social component. This

also implies that a human-to-human RRS should be tested more carefully than a user-to-item

RS, because the consequences of potential failure in these social aspects are inherently more

severe for their users. Thus, we suggest that system environments which heavily depend

on reciprocal recommendations first introduce a closed beta version (or similar) for highly

monitored internal testing.

3.3.1.1 Cold-Start

The new user cold-start3 problem has a substantively higher impact on RRSs. This is due to

multiple facets in the reciprocal setting:

• Availability (cf. table 3.2.1): Depending on the application, users might disappear com-

pletely from the system after success (e.g. in the dating domain), thus resulting in less

available users for recommending. Additionally, it might prevent the system from

using the collaborative data of them in cold-start settings (e.g. upon account dele-

tion) [Agg+16, p. 443].

• Success (cf. table 3.2.1): Because one successful recommendation requires two positive

user interactions, the difficulty of finding recommendation candidates for cold-start

users increases; it is not enough that the new user likes the recommendation, but the

object also need to like the new user. This further shrinks the potential set of users to

be recommended.

• Social: Users who are new to the system are isolated nodes. It is especially important to

be able to offer reliable (preferably reciprocal) recommendations right from the start to

3In RRSs, there are no items and therefore the new item cold-start is non-existent

38

3.3 Analysis of Requirements

prevent disappointment and social exclusion. For traditional RSs, not receiving an item
recommendation does usually not involve a direct risk of negative social consequences.

3.3.1.2 Feature Engineering

RRSs rely more heavily on (user) content data than RSs due to the accelerated new-user cold

start problem [Agg+16, p. 444]. Moreover, there is only one type of information to be used

as input, that is user metadata (and no item metadata). The user input is more prone to

inaccurate or invalid information and therefore the features require a more precise selection,

cleaning and excessive preparation than the content information of traditional RSs items

which is typically entered by experts in the specific domain.

Another view on the importance of proper data cleaning: It is known that attacks by mali-

cious actors against the RS itself exist. Attackers can place specifically designed features or

several artificial influential user profiles into the system.4 As RRSs built on user interaction

that can go beyond the controlled virtual environment of the application, such as real-life

meetings with foreigners in dating scenarios, users can be brought into dangerous situa-

tions. Therefore, filtering out malicious profiles during, but also over and above, the process

of Feature Engineering for RRSs is very important for the users’ safety and requires more

effort due to the complexity of the system itself and its possible broad attack surface that

requires expertise.5

Concluding, RRSs naturally require more user data that needs to be considered and pro-

cessed [Agg+16], accordingly the goal of suitable Feature Engineering is substantively more

difficult to achieve.

3.3.1.3 Fairness

For RRSs, the Fairness goal has an additional social impact, that makes it a much more con-

troversial and multi-faceted topic than for user-item RSs. In section 2.3.3, we examined the

common popularity bias in the context of RSs.

If we consider the following: In a RRS, if a user is an extremely popular choice for many

reciprocal recommendations, this implies several characteristics:

4further reading available in [Agg+16, pp. 385 - 398]
5see also SFR+06, for more security considerations on RSs.

39

3 Reciprocal Recommender Systems

• Users have a limited attention span (see table 3.2.1, “Availability”). Over-representing

her/him in the list of reciprocal recommendations will likely result in rejection or the

user ignoring the majority of asymmetric interactions.

• Other less popular users are likely to be under-represented and can neither receive

sufficient reciprocal recommendations as subjects nor be recommended to other users

(“niche group”) that normallywould in fact be interested (cf. section 2.3.3, “Expectation

vs. Recommendation”). This is also an obstacle that makes handling cold-start more

difficult.

• Recommendations are less diverse and users can not profit from novel recommenda-

tions that are beyond their typical social environment.

Especially because the recommendations have the potential to play an important role in

reducing racial and social prejudice [Mcm19] [Lew13] and because of the large social impact

of fairness [GF17, 53 f.], it is consequentially ranked higher for RRSs than user-item RSs

which usually do not built upon social interactions.

3.3.1.4 Explainability

As shown in section 2.3.4 before, providingmeaningful high-quality explanations is by itself a

difficult task, as it requires the detailed study of user behavior and understanding. Neverthe-

less, the baseline in black for RSs in fig. 3.3.1 shows the least estimated importance, because

there are relatively safe choices for explanation interfaces (see section 2.3.4). Additionally,

failure to provide high-quality explanations does not prevent the user from receiving mean-

ingful recommendations, thus they have more of a complementary (optional) character than

the other goals.

As opposed to the traditional variant, for RRSs, we identified three additional restrictions

and challenges to accomplish the goal:

1. Personalized explanations are much more suitable in RRSs than explanations that rely

on public information. These explanations would justify a recommendation in recipro-

cal environments too superficially. For instance, “Alice is recommended to you because

she is very popular among many other users of this network” would a) fail to trans-

parently explain the recommendation and b) not suit the goal of fairness, i.e. it would

explain that the system suffers from popularity bias (see previous section 3.3.1.3).

40

3.3 Analysis of Requirements

2. Because of the first restriction, we need to use private-personalized information to

justify a recommendation. As reciprocal recommendations require both users to take

part in the prediction, both users’ preferences should be considered within the expla-

nation, for instance to support the transparency. The problem with also explaining

why the object user likes the subject is that the general preference information of the

respective other party should be kept private, as it might also implicitly reveal past

interactions with other users. On the other hand, silencing the object’s preferences

makes the explanation less transparent and only one-sided, similar to non-reciprocal

recommendations.

The first-of-its-kind study [KRK18] from July 2018 analyzed when and how to provide recip-

rocal explanations. The following generic construct6 used to explain reciprocal recommen-
dations to a user u [KRK18]:

 Listing 3.3.1: Construct for reciprocal explanations

1 def explain(u, recommendations) -> list:
2 explanations = []
3 for v in recommendations:
4 ex_uv = rrs.explain(u, v) # Preferences of u towards v
5 ex_vu = rrs.explain(v, u) # Preferences of v towards u
6 explanations.append((r, ex_uv, ex_vu)) # Aggregate explanations
7 return explanations

Depending on the implementation of the explain method this would be sufficient to get a

tuple of preference attributes ex_uv of subject user u for v (line 4) and a tuple of preference

attributes ex_vu of object user v for u (line 5) which is then combined for the recommendation

r and appended to a result list (line 6). Notice how this reflects the aggregation of preferences

as in eq. (3.1.4), only that now preference attributes are fused together to form an explanation

for each recommendation instead of building a preference score.

6cf. KRK18, “Algorithm 1” has been transformed to a more concise Python-like pseudo-code.

41

3 Reciprocal Recommender Systems

 Example 3.3.1: Privacy vs. Reciprocal Explanation

In a dating RE, the following dataa is known about user Alice:
alice = {'gender': 'female', 'education': 'B.Sc.', 'economic': 'wealthy'}
If we keep the reciprocal explanation method in listing 3.3.1 as is for Alice and do not

further filter the preference attributes, the tuple ex_vu is problematic: Suppose user v
is Bob, and one of the attributes in ex_vu is ’wealthy’; because he recently chatted with

a lot of people with the ’wealthy’ economic status. Giving Alice the explanation that

Bob has been recommended to her because he likes ’wealthy’ people could be wrong or

misleading and a violation to Bob’s privacy. Bob definitely does not want his computed

preferences to be exposed, especially not to Alice, because it could negatively impact

her opinion about him for further interactions (or EoIs).

aSome attributes are extracted from KRK18, fig. 1, to reflect the current situation in dating apps.

In [KRK18], two different implementations of the explain method have first been tested in

a simulated environment with 121 participants and later in a real-world dating RE with 287

participants. The first named “transparent explanation method” works by explaining the

top 𝑘 attributes that were most popular among a user’s chat partners. The second named

“correlation-based explanation method” works by putting these into correlation to the total

of profiles the user has sighted (also including the ones that the user did not further interact

with beyond viewing them).

For instance, James decided to chat with 13 users, of whom 10 had an ’academic’ background

and 7 liked ’arts’. For the top 𝑘 = 2, the first algorithmwould return ('academic', 'arts').
The second algorithm would return ('arts', 'academic'), which is due to the following

fact: James viewed a total of 37 profiles, 20 were academic, but only 8 liked arts. Therefore, he

only contacted half of the academic persons, but every ’arts’-person except one. This makes

the correlation between the messaged people who liked arts and the total representation of

viewed people stronger than for academic people.

42

3.3 Analysis of Requirements

Figure 3.3.2: Reciprocal explanation
in a dating RE with re-
moved partner prefer-
ence attributes.

Source: [KRK18]

Overall, the correlation-based explanation method was

superior, showing significantly higher values for per-
ceived transparency, satisfaction and the perceived use-
fulness in a survey for the participants, which is why

this method has been chosen for reciprocal recom-

mendations [KRK18].

In the real-world dating RE, the research team of

[KRK18] was not allowed to reveal the preference at-

tributes of the recommendation object to the subject

due to privacy concerns, which is due to restriction 2

from the beginning of this section. From a data pro-

tection aspect, this is ideal, but less beneficial when

it comes to a neutral study environment7; as shown

by fig. 3.3.2, the team had to limit the reciprocal part

to a generic sentence that the other user is likely to

respond positively instead of showing why the user

is interested, i.e. which specific attributes the other

user likes. Nevertheless, even with this minimal re-

ciprocal part, the explanation outperformed the pure

one-sided explanation that is typically to be found in

non-REs. It especially had an encouraging effect on

users who sent lessmessages than themedian. There-

with, this user group showed a significant raise in

the acceptance rate of a recommendation, as it pos-

sibly helped with alleviating possible fears of rejec-

tion [KRK18, p. 6] and therewith even increasing the trust in the system.

3.3.2 Requirements

By carefully examining the results of section 3.3.1, we derive the following functional re-

quirements for our multi-purpose RRS framework, considering researchers and developers
as primary users of the framework:

7An influencing side-effect has been introduced: The study compares reciprocal vs. non-reciprocal explana-
tions, however, especially the reciprocal part is impaired by removing the other user’s preferred attributes.

43

3 Reciprocal Recommender Systems

1. Tackle Cold-Start

Recommendation subjects that do not have an interaction record should be able to

receive suitable recommendation objects.

2. Automatize Feature Engineering Steps

The user should be supported with commonly used feature engineering procedures

(even though most of feature engineering is domain-specific). Testing with new fea-

tures must be made easy.

3. Algorithmic Choice

The framework must offer a built-in variety of recommendation algorithms.

4. Evaluation

By providing common evaluation functionality, users are able to analyze performance

and should be encouraged to experiment with different parameters.

5. Data Source Independence

The framework must be independent from any data source, i.e. users should not be

forced to a single data storage format.

6. Fairness

Provide functionality to estimate a users popularity and mitigate the popularity bias.

7. Explainability

Provide methods to simplify possible explanations about recommendations to assist so

that users are able to create explanations that follow the three guidelines mentioned

in section 2.3.4. To further improve the understanding of data and algorithms, the

framework should contain built-in visualization capabilities.

8. Implicit Feedback Specialization

Implicit feedback data is a potentially widely available and powerful source of user

feedback [Kul18] and the framework should prioritize it over explicit feedback data

(see also section 2.2.3.2 for the motivation).

Furthermore, the following four requirements are on the non-functional side of requirements:

44

3.3 Analysis of Requirements

1. Reproducibility

Provide reproducible and comprehensive examples to help users to further research the

field of Reciprocal Recommender Systems.

2. Standardization

Establish a well-known model to encapsulate users and their interactions usable by

researchers to fluently describe a RRS.

3. Modular Extensibility

It should be made easy to extend and enrich the framework in the future (for instance

with new RRS algorithms).

4. Convention over Configuration

Default values should fit a broad spectrum of use-cases.

45

4 Chaos

In this chapter, we explore the solution that has been specifically implemented for this work:

Chaos, a novel framework for RRSs, specialized in implicit feedback. We start by introducing

a typical workflow highlighting use-cases and then outline the technology it builds upon in

section 4.1.2. These are chosen to be in compliance with the requirements in section 3.3.2.

In section 4.2, we discuss each core component and the involved architectural and program-

matic design in detail. Thereafter, in section 4.3, we describe the implemented recommen-

dation approaches which we consider as the algorithmic core of Chaos.

Finally, in the last section 4.4, Chaos’ versatility is demonstrated by using it in combination

with GitHub’s publicly available API to present an innovative solution for personalized code

collaborator recommendations.

4.1 Overview

4.1.1 Workflow

A typical workflow that must be supported by the framework is offline training, which is

used to train an ML-based model initially [CAS16]. Offline training essentially translates to

“learning on a batch of training data that is known beforehand”, i.e. there is an ambiguity

to the more commonly used offline/online states in network terminology. To disambiguate,

some sources use the term static training. Dynamic training refers to a continuously updated

model that is guaranteed to be on par with the latest online training data. [CAS16]

In case of Chaos, the process in fig. 4.1.1 reflects most of the framework’s functionality and

core components, thus providing a good high-level overview from a user’s perspective. Sec-

tion 4.1.1 briefly explains each task of the workflow with a reference to the upcoming sec-

tion(s).

47

4 Chaos

Table 4.1.1: Offline Training workflow description for fig. 4.1.1

Task Description Reference

Select features/interactions The Researcher needs to decide which features and in-
teractions are included to fetch a batch of (training)
data.

3.3.1.2

Source origin data Original data needs to be sourced (for instance from a
database or file) and transformed to the data model.

4.2.1, 4.2.2

Process Data Model The Data Model is processed by cleaning, extracting
and processing features.

4.2.3

Translate Data Model The Data Model is translated to a language that the pre-
dictor can understand.

4.2.4.1

Train Predictor The Predictor is trained on training data so that it is
later able to generate recommendations for users.

4.2.4.3

Evaluate Predictor After training, the Predictor is evaluated by the Eval-
uator by generating recommendations against known
positive interactions with different metrics.

4.2.5

Analyze Report The researcher analyzes the evaluation results. If the
performance is sufficient, the model can be deployed.
Otherwise, see below.

4.2.5.2

Change parameters If performance is insufficient, the model parameters (ei-
ther features, interactions or hyperparameters) need to
be tuned or modified.

4.2.5.2

O
ffl

in
e

 tr
ai

ni
ng

 w
ith

 C
ha

os

R
es

ea
rc

he
r

C
ha

os
 R

R
S

Choose different features,
hyperparameters or
interaction types

Translate
Data Model

Processed
Data Model

Report

Source
original data

Data Model

Train
Predictor

Predictor Model

Original Data

Change
parameters

Select features/
interactions

Offline training
started

Process
Data Model

Analyze Report

Is performance
sufficient?

Save/Deploy
Predictor

Predictor
deployed

no

Evaluate
Predictor

yes

Figure 4.1.1: Offline Training with Chaos before deployment

48

4.1 Overview

Please note that the termination criterion either depends on a pre-defined goal or if no fur-

ther improvement is possible (considering limiting/limited resources). In general, there are

multiple metrics to be used, some of the most important for RRSs are outlined in section 4.2.5.

4.1.2 Technology

In the following, the used technology is described. The framework is fully written in Python
and uses Conda as a cross-platform package/environment manager to offer a reproducible

researching environment. To provide an overview, the used packages are divided into four

categories; Data Model, Feature Engineering, Prediction and Visualization, see fig. 4.1.2.

Figure 4.1.2: Technology Stack of Chaos

49

4 Chaos

4.1.2.1 Data Model

The data model uses Pandas1 for user profile data and Grapresso2 as a graph library for user

relations. Pandas is a well-known Python library often used by data scientists to represent

tabular (i.e. 2-dimensional) data in data frames. It partially builds on top of more primitive

but powerful NumPy arrays which are vectorized in order to achieve a higher performance

level.

Grapresso is a meta graph-library that has been refined by the author during the work on

this thesis. It aims to provide one simplified API that can be used for a variety of backends.
In case of Chaos, the mainly used backend is the popular pythonic NetworkX graph library

which is integrated in order to gain access to the broad range of network analysis methods

that it provides [HSS08]. Grapresso is used as an intermediary where possible to be able to

exchange the backend at a later stage of development if necessary more effortlessly.

4.1.2.2 Feature Engineering

To process the data model as a step of feature engineering (see section 2.3.2), transformations

and extractions are performed by using the technology of the data model.

However, we need to deal with user information types that are non-standardized (such as

user biographies, user status, favorite activities or other free text fields) instead of restricted

to a specific choice of options (such as age or location). This is a challenge for (partly) au-

tomatizing feature engineering. Therefore, we integrated spaCy as a fast Natural Language

Processing (NLP) library [Hon+20] that attempts to understand humans.

4.1.2.3 Prediction

We choose the aforementioned LightFM (see section 2.2.3) as a reference implementation for

the framework’s hybrid prediction/recommendation capabilities. In general, the integration

of an existing latent factor model implementation that is normally only applied to retrieve

user-item recommendations is uncommon in the field of RRSs [cf. Pal+20]. Nevertheless,

considering the objectives and the research question of this work, the following determin-

ing advantages have been determined: Frameworks for user-item RSs are widely available

1https://pandas.pydata.org/
2https://git.io/grapresso

50

https://pandas.pydata.org/
https://git.io/grapresso

4.1 Overview

[Kul15] [Goo18], well-tested in production [Kul15, p. 6] [CAS16] and in the literature they

are extensively known and described [Agg+16]. By contrast, for RRSs, the algorithms are

largely only available on a pseudo-code basis and major studies rely on proprietary datasets

[Ake+11] [Piz+10b] [Xia+16] [NP19a], thus being questionable regarding their results’ va-
lidity and reliability, as already noted in the introductory remarks (section 1.2).

The “constrain” to integrate an existing code foundation is actually an advantage that helps

with the overall goal of reproducibility. LightFM has been evaluated on the publicly available

MovieLens dataset [Kul15], which is one of the most well-studied datasets for RSs [Eks+11].

Finally, supporting a hybrid approach allows us to unite the fundamental advantages of

content- and collaborative information over their pure variants as highlighted before (in

section 2.2.3 and section 2.3). For instance, it aids to fulfill the requirement of explanations

because the learned embeddings can be used to estimate a user’s similarity to his/her spe-

cific attributes. Even more importantly, it helps with mitigating the cold-start problem as

new (unknown) users can be constructed based on their profile data.

4.1.2.4 Visualization

For visualizing learned embeddings, the framework uses the Projector UI component from

TensorBoard. It enables the projection of high-dimensional embeddings in a 3-dimensional

space that can actually be perceived by the human eye and interpreted by the human brain.

This greatly increases the explainability of latent factor hybrid models.

For visualizing evaluation results, Altair is used. It is a statistic visualization library that

builds upon a small visualization grammar called Vega-Lite and features a declarative way

of defining diagrams that often makes it possible to provide meaningful statistics with just

a few lines of codes [Van+18]. The precondition is that it follows the basic conventions of

tidy data, which “provide a standardized way to link the structure of a dataset (its physical

layout) with its semantics (its meaning)” [Wic+14, pp. 1–4]:

1. Each variable forms a column.

2. Each observation forms a row.

3. Each type of observational unit forms a table.

Where appropriate and possible, Chaos makes use of these three basic principles.

51

4 Chaos

4.2 Core Components

In the following, the core components of the framework are described. Each component is

accompanied by a simplified UML diagram to provide an object-oriented view on the frame-

work. For better readability, methods/attributes that do not play a direct role in the expla-

nation text have been removed.

 Notebook 4.2.1: Interactive Chaos

Readers who want to explore Chaos practically are invited to start an interactive note-

book with JupyterLab right at this point. For easy setup, please refer to the project’s

README.md, “Scenario 1: Learning Group”.

4.2.1 Data Model

Figure 4.2.1: Data Model UML diagram

The data model consists of user interactions on the collaborative side (section 4.2.1.1) and user
profile data3 on the content side (section 4.2.1.2). Together, both data types form the input to

a hybrid model, and alone they respectively form the input to a CF or CBF implementation.

As shown by fig. 4.2.1, the DataModel is derived from the most generic UserRepository and

3For more explicitness, please note that we prefer to use profile data overmetadata as the latter describes “data
over data”. In the former chapters, we used metadata in the context of hybrid RSs where the interactions
(or embeddings) were the user’s “main data” and the supplementary content data therewith “metadata”.

52

4.2 Core Components

the user is – in total – represented by a unique id (the user’s name), a dynamically defined

profile_data dictionary (section 4.2.1.2) and a reference to the user’s graph Node which is

a direct hint to the next section.

4.2.1.1 User Interactions

As summarized in table 3.1.2, typical (a)symmetric interactions for implicit feedback are pro-

file views, messaging, follow/friend requests or user likes. For some implicit feedback inter-

actions, there is a – often time-constrained – usage limit, e.g. Bob can send a friend request

to Alice only once a month. To the contrary, some are not limited in any way, e.g. Alice can

view Bob’s profile a thousand times. This indicates that implicit feedback interactions are

unbalanced between users by nature. Even if the interactions happen solely on a symmetric,

one-time basis (EoIs), it might be a requirement to differentiate between an proactive (“ask

for friendship”) and a reactive interaction (“accept friendship”), see table 3.2.1.

For the above reasons, we choose a directed graph for the interaction model with the users

as nodes. Furthermore, each interaction can be weighted differently; for instance, a “view”

interaction is less meaningful than a “sent chat message” or an “accepted friendship”. To

not confuse these weights with the common weight term in graph theory, we use the term

strength to indicate how strong the feedback of an interaction is.

Therefore, we specify that an edge between two nodes 𝑢 and 𝑣 approximates the strength of

all interactions between them (denoted as 𝐼 (𝑢, 𝑣)) by the sum of all (atomic) single interaction

strengths 𝑠𝑖:

𝑠(𝑢, 𝑣) ≔ ∑
𝑖∈𝐼 (𝑢,𝑣)

𝑠𝑖 with 𝑠𝑖 > 0 (4.2.1)

The constrain on positive strengths comes from the framework’s specialization in implicit

feedback, where no negative feedback is modeled explicitly (section 2.2.3.2) and it further-

more aids the simplicity and compatibility with many algorithms from a network analysis

as well as RS standpoint (see upcoming section 4.2.3 and section 4.3.3). For the predictor

introduced in the following section 4.2.4.3, the strength between two nodes is the confidence
we have that the interaction is indeed a positive interaction.

Figure 4.2.2 has been automatically rendered by the framework with help of NetworkX. It

53

4 Chaos

Figure 4.2.2: Example of a directed interaction graph/network with color bar

consists of various interaction types: One cold-start node with zero interactions, two pairs

of reciprocally (bidirectionally) connected nodes and three one-sided interaction edges. To-

gether with the color bar on the right, the color of the edge between 𝑢 and 𝑣 indicates 𝑠(𝑢, 𝑣)
from eq. (4.2.1). Note that without any further normalization of 𝑠(𝑢, 𝑣), some edges might be

outliers – see the upcoming section 4.2.3 for further guidance on limiting over-weighting.

In an attempt to mirror a real-world situation commonly found on SNS, this graph is only

partially reciprocal. The overall reciprocity of
4
7 is given by the ratio of bidirectional edges

and total edges – a complete reciprocal graph has a result of 1 [see also HSS08].

 Example 4.2.1: Interaction Protocol and Finite State Machine

To support as many use-cases as possible, the framework’s model makes no limiting assump-

tions about the order or amount of interactions. Nevertheless, in many SNS, the interactions

can be modelled as a network protocol between two clients (the users). For instance, the state

of “message sent” can only happen after “friend request accepted” or similar. From a theoretic

standpoint, they can also be represented as a finite state machine, but due to the involved com-

plexity of representing two parties’ interaction states per transition, communicating finite state
machines might be more appropriate, which have been introduced in [BZ83].

54

4.2 Core Components

4.2.1.2 User Profile

Each node in the interaction graph should (but does not need to) have an entry in the user

DataFrame. The primary key to link each node from the previous section to the user profile

row in a 1:0 ..1 way is the user name which is a string to uniquely identify a user across

all of the different components, thus improving the framework’s usability and clarity from a

developer perspective.

Figure 4.2.3: User profile DataFrame with one row per user and columns as attributes

Figure 4.2.3 shows an artificial/exemplary data frame captured in the SciView of the popular

Python IDE PyCharm4. Each row contains a user (indexed by the unique user name), each

column describes an attribute of the user. Chaos is fully agnostic towards the contained

attributes, except for the last column: The preference_filter is a special column which

contains a numexpr5 that is used in conjunction with Pandas query function to efficiently

retrieve other users matching the criteria. For instance, the user row “Yannick” contains a

must-have criteria for users who study ISE, i.e. only the other two users (“Kai” and “Ivonne”)

will be matched (himself excluded). We examine the component that implements this func-

tionality in section 4.2.4.2.

4.2.2 Data Source

As shown in fig. 4.2.4, a data-source can be as simple a CSV reader that reads-in two local

files (one for interactions and one for the user profiles) or more complex, fetching data from

a remote GraphQL endpoint (described later in section 4.4.1). Users of the framework are

encouraged to write their own implementation of the very basic data Source interface in

case a specific persistence technology is missing and optimally contribute it to the project.

4https://www.jetbrains.com/pycharm/
5https://numexpr.readthedocs.io/

55

https://www.jetbrains.com/pycharm/
https://numexpr.readthedocs.io/

4 Chaos

Figure 4.2.4: Data Source and implementations class diagram

 Listing 4.2.1: Excerpt of an interactions CSV file

1 from,interaction,to
2 Yannick,chat,Andreas
3 Yannick,chat,Andreas
4 Kai,chat,Christine
5 # ...
6 Andreas,view,Yannick

The excerpt in listing 4.2.1 corresponds to fig. 4.2.2 with the following strengths defined in

an interaction specification (see also constructor of Source in fig. 4.2.4):

 Listing 4.2.2: Interaction specification with different strengths

1 view:
2 strength: 1
3 description: 'Occurs when viewing a profile.'
4 chat:
5 strength: 2.5
6 description: 'Occurs when sending a chat message.'

4.2.3 Data Processor

Processors, as modelled in fig. 4.2.5 can be used to transform and extract features. They help

the researcher to perform feature engineering more efficiently (cf. section 3.3.1.2). We differ-

entiate between Extractors which potentially add a column to the user profile DataFrame
and Transformers which are only allowed to alter existing columns.

A Pipeline further simplifies the workflow by aggregating multiple Processors to one. Its

56

4.2 Core Components

Figure 4.2.5: Data Processor and Pipelines class diagram

capabilities are best outlined by the following code example:

 Listing 4.2.3: Data Pipeline for feature engineering

1 pipeline = SequentialPipeline([
2 GraphEdgeMapper(
3 strength=lambda e: math.log(1 + e.strength, 2)
4),
5 GraphEdgeMapper(
6 capacity=lambda e: e.strength,
7 cost=lambda e: 1 / e.strength
8),
9 ParallelPipeline([
10 GraphPopularityExtractor('popularity', add_as_node_attrib=True,
11 labels=['low', 'medium', 'high', 'prominent']),
12 DataFrameBucketExtractor('age', 'age_bucket',
13 labels=['young', 'middle', 'old'])
14])
15])

Referring to listing 4.2.3: In lines 2 to 4, the edges’ strengths are first smoothed with a

GraphEdgeMapper by applying a log2. This exemplary normalization step ensures that there

are less outliers in the interaction graph caused by edges that have a high strength, e.g.

caused by many high-strength interactions. In lines 5 to 8, we show that more attributes

(namely capacity and cost) are added to the edge effortlessly. One way to interpret each

edge’s strength for maximum flow problems is as capacity and for shortest path problems

57

4 Chaos

as inverse cost. It essentially opens the way for further experimentation with network algo-

rithms.

Starting from line 9, we show that DataPipelines can be nested. Furthermore, they can

be parallelized (useful for long running I/O-consuming tasks): The two inner Extractors
perform an isolated process per Processor. Thereafter, the data is synchronized by merging

it optimistically; this means that no checks occur if two extractors modify the same column

(“the last one wins”). The GraphPopularityExtractor (line 10) approximates the popular-

ity of a node and puts it in the “popularity” column. To calculate a node’s popularity, we

utilize graph centrality metrics. In the framework’s first proof of concept, three metrics are

supported and based on NetworkX [HSS08] algorithms [see also PRG16, p. 2]:

1. Degree centrality: Possibly the most simple metric to measure centrality in a graph,

defined as the number of edges incident to a node.

2. Betweenness centrality: Metric based on how many times a node is passed for each

of the graph’s shortest different 𝑢 → 𝑣 paths (more efficient approximations are done

by sampling only a few).

3. Eigenvector centrality: Complexmetric based on the assumption that nodes connected

to highly influential nodes result in a higher score than connections to less influential

nodes. Google’s proprietary algorithm to rank pages is based on a customized version

of this metric [PRG16].

By default, the degree centrality is used by the GraphPopularityExtractor. The latter two

algorithms rely on the prior cost-assignment. If we would use the plain strength without

inverting it, the objective would be inverted instead; that is, instead of measuring centrality,

we would measure the opposite of decentralization, which is an inappropriate estimation of

popularity.

Continuing with listing 4.2.3, the DataFrameBucketExtractor in lines 12 and 13 assigns one

of the three labels based on quantiles to the age and writes them in the age_bucket column,

which is a feature engineering step we encountered before in section 2.2.3 to discretize the

continuous age value.

58

4.2 Core Components

4.2.3.1 Alleviate Popularity Bias

To alleviate the popularity bias, please note that we could also use the result from the Graph-
PopularityExtractor to discount outgoing interactions to popular nodes, for instance by

using the before calculated relative degree centrality (ranging from 0 to 1):

 Listing 4.2.4: Discounting edges based on relative degree centrality

1 GraphEdgeMapper(
2 strength=lambda e: e.strength-(e.strength * 0.5 * e.v.data['degree'])
3)

By inserting the GraphEdgeMapper from listing 4.2.4 to the pipeline listing 4.2.3 (after line

11), the edges’ strengths to highly influential nodes (v) are discounted by a maximum of 50%

in an attempt to alleviate the popularity bias which we introduced in section 3.3.1.3.

There are many other experimental possibilities and combinations to embed network-based

metrics into the interaction model: We could also discount6 by the inverse reciprocity of a

node (see section 4.2.1.1), or by the ratio of incoming and outgoing interactions to approxi-

mate the responsiveness of a node. This way, nodes that are believed to be overwhelmed by

incoming interactions (or EoIs, see section 3.1.2.3) [Kle+18] are in the end less likely to be

recommended all over again.

4.2.3.2 Summary

In the above example we only showed a variation of Chaos’s feature engineering capabilities,

a more versatile pipeline is presented in the following section 4.4.2.

Notably, Chaos features a clear, concise and declarative way for common feature engineer-

ing steps that invite to experiment with. For comparison, from a purely software architec-

tural view, the pipelines from the popular ML toolkit scikit-learn are conceptualized similarly

[Bui+13].

6either discount edges to popular nodes or conversely promote edges to unpopular nodes

59

4 Chaos

4.2.4 Recommendation

Figure 4.2.6: Major components around the Predictor class

As fig. 4.2.6 illustrates, multiple components are involved in the process of recommenda-

tions. The components with the main algorithmic logic are highlighted in green and will be

explained separately in section 4.3, as they are the algorithmic heart of the framework.

4.2.4.1 Translator

Recommendation algorithms are allowed to be based on a different model than the frame-

work’s native DataModel which we described in section 4.2.1. For this purpose, the Trans-
lator exists: It is the two-way bridge between Chaos’ DataModel and the Predictor (see

section 4.2.4.3). For instance, the LFMTranslator class is able to translate the model to a rep-

resentation that LightFM can understand: The user profile DataFrame from section 4.2.1.2 is

translated to a user matrix where each feature is one-hot-encoded automatically. The graph

from section 4.2.1.1 is translated to a SciPy sparse matrix7 (see section 4.3.1 for more details).

7https://docs.scipy.org/doc/scipy/reference/sparse.html

60

https://docs.scipy.org/doc/scipy/reference/sparse.html

4.2 Core Components

4.2.4.2 Candidate Generator

Because Chaos is a single-class RRS framework (see section 3.1.2.2), generating potential can-

didates, which are users who are compatible to a given user, is an important step. From an

efficiency viewpoint, generating candidates prior to recommendation is also a logical step;

users that do not fulfill must-have criteria (e.g. given by the preference_filter in sec-

tion 4.2.1.2) should be excluded as early as possible from further calculations.

Therefore, the CandidateGenerator is implemented and executed before calling the recom-

mendation method for a user. Under the hood, it is implemented as a decorator pattern (see

the UML diagram fig. 4.2.6) and instantiated either by using a builder or directly – in the

latter case, the code can get more obfuscated due to the nested structure. This is shown by

the comparative code listing 4.2.5 where both generators deliver equal results:

 Listing 4.2.5: Candidate Generator: Decorator vs. Builder

1 # Using nested Decorator (execution →, filtering ←):
2 cg1 = ReciprocalCG(
3 CacheCG(PreferenceCG(DMCandidateRepo(data_model))
4)
5 # Using Builder (with syntactic sugar for CacheCG and ReciprocalCG):
6 cg2 = (CandidateGeneratorBuilder(DMCandidateRepo(data_model)) # filtering ↓
7 .filter(PreferenceCG).cache()
8 .reciprocal() # execution ↑
9 .build())
10 assert cg1.retrieve_candidates('Kai') == cg2.retrieve_candidates('Kai')

The full flow-of-control of the example code is shown by the sequence diagram fig. 4.2.7

where each retrieve_candidates-call is delegated to its inner successor. Focusing on this

diagram, the semantics of each Candidate Generator (CG) are (from right to left):

• DMCandidateRepo: The repository for the candidates. The implementation is minimal

and trivially returns the index values (user names) of the DataFrame but without the

user u for whom the candidates are generated for (users do not receive recommenda-

tions with themselves).

• PreferenceCG: Filters the candidates returned by the repository and only returns the

ones that match the preference_filter.

61

4 Chaos

Figure 4.2.7: Candidate Generator Decorator Sequence Diagram

• CacheCG: Caching layer that saves the result for u in a dictionary (can be extended to

e.g. make use of a LRU strategy). As indicated in green, if the user is available the

next time the layer is called (“cache hit”), the path to the right is cut and candidates for

PreferencesCG(DMCanddiateRepo(dm)) are returned immediately.

• ReciprocalCG: Special CG that ensures that the set of u_candidates (candidates for

u) only contains v who also have u in their set of v_candidates. In other words,

this candidate generator ensures that the users are reciprocally compatible (compare

with eq. (3.1.2)). In fig. 4.2.7, the repetition of the other CG’s sequences is omitted for

simplification (indicated by the vertical dot-line). Furthermore, this CG is subject to

profit from the cache layer as requests for u_candidates are likely to be implicitly

repeated, thus known to the cache. From a runtime perspective, this CG highlights

very well how it consequentially is len(u_candidates)-times more expensive to filter

for reciprocal interests.

62

4.2 Core Components

Finally, with this knowledge, we are able to calculate the output of the call in line 10 of

listing 4.2.5 before and after the ReciprocalCG: Before, all other users except “Natalia” will be

returned as u_candidates. Then, the ReciprocalCG additionally removes “Ivonne” (because

of her preference_filter != “coffee”) which leaves us to 4 other users (Yannick, Louisa,

Christine, Andreas) as recommendation candidates.

The naming “CandidateGenerator” is based on a component described in the paper [CAS16]

about a large-scale DL-based RS for YouTube. It similarly filters videos by a funnel, which

highlights the importance in the sense that this approach is (commonly) applied in real-world

scenarios.

For Chaos, we found and utilized a design pattern that works particularly well: It enables a

transparent, pluggable and highly customizable way to compose a CG ready to serve candi-

dates for a specific use case

4.2.4.3 Predictor

As modelled in fig. 4.2.6, the Predictor class holds a Translator instance for two-way data

model translations and a CandidateRepo for candidate generation. Furthermore, it has the

abstract predict function for one user’s top k recommendations that are returned as a de-

scending score-ordered dictionary in the form '<username>': <recommendation_score>.
The build_predict_graph function builds a prediction graph for the selected users with

k edges for each user (see parameters). It is essentially implemented as a for-loop that adds

nodes/edges to a graph based on the former single-user predict function that needs to be

implemented by concrete classes.

In the class hierarchy, we differentiate between ModelBasedPredictors and MemoryBased-
Predictors, just as in the preliminary fig. 2.2.1:

The ModelBasedPredictor has an additional method to train (fit) the model in accordance

to the interaction data that is provided by the Translator. With each epoch, the model is

fitted more to the interaction training data. In case of the LFMPredictor, the training data

consists of a user matrix and an interaction matrix that is used to train an internal LightFM
model (see section 4.3.1). The ReciprocalWrapper makes it possible to wrap another Pre-
dictor and deliver reciprocal-optimized results for the predictions (see section 4.3.2).

On the MemoryBasedPredictor side, the framework implements a pure CF approach orig-

63

4 Chaos

inally described in the online dating study [Xia+15] by Xia et al. in 2015 that is commonly

referred to as “baseline RRS” and has later been referred to as RCF which stands for Recip-

rocal CF [Pal+20] (see section 4.3.3).

4.2.5 Evaluator

Figure 4.2.8: Evaluator class diagram

Figure 4.2.8 shows the Evaluator interface which can be seen as a supervisor that measures

and compares the performance of multiple Predictors based on historic data and is able to

return the best among of them. In general, for its specialization, the EpochBasedEvaluator,
the process is outlined as follows:

1. Initialization: Split the know known successful connections randomly into two disjoint

sets: A training set (usually the majority) a test set (smaller, often around 20%). For

implicit data, interactions indicate positive feedback – that is, each edge in the graph

from section 4.2.1.1 indicates a successful connection.8

2. On run_all: Train the model epoch-range-wise9 on the training set. Then call eval-
uate per each metric and each predictor. The implemented evaluate method must

validate based the given metric against the test set (see step 1).

8One could also define an edge as successful if it exceeds a certain 𝑠(𝑢, 𝑣), but here, we simplify.
9The epochs parameter accepts a positive Python range, e.g. range(0, 12, 2) means train for 5 ∗ 2 epochs

(stop parameter = 12 is exclusive, start = 0 functions as train state reset and starting point in diagrams).

64

4.2 Core Components

3. A researcher can now call best_of_all to retrieve the best Predictor including its

epoch at a given metric (summarized by the BestResult object) or create_report
to gain more detailed insights by getting served an automatically generated chart for

which the framework uses Altair and the Altair Viewer package.

Additional note on step 2: The evaluate method must also be able to validate the given

metric based on the training set (the method returns a 2-value Tuple, see fig. 4.2.8), which is

a good health check to see if the correctly adapts to the training data (and converges), but it

is not a meaningful indicator to measure real-world performance – after all, a predictor that

is 100% correct based on known data is not making any predictions but plainly repeating

historic data, which would defeat the purpose of RSs. Part of this process (splitting dataset

and validating on the test set) is commonly referred to as cross validation [Kul15], as the

training interactions do not contain any test interactions and vice versa.

For RSs, multiple well-known metrics exist, which will be introduced as follows.

4.2.5.1 Metrics

One way to think about a successful metric is to see the recommendations (predictions) from

the user’s perspective. By calling the predict method (see section 4.2.4.3), the recommen-

dation subject (user) gets an ordered list of top 𝑘 recommendations: If the user has mostly

recommendations in the top 𝑘 list that turn out to be successful connections based on the test
set (see step 1 in the previous section), our system performs particularly well.

The proportion of the successful connections in the top 𝑘 recommendations for a given user

is commonly called precision at 𝑘 [Kul15]. It is defined as follows:10

𝑝@𝑘 = |successful(predictions@k)|
|predictions@k| = |successful(predictions@k)|

𝑘 (4.2.2)

Another commonly usedmetric is recall at 𝑘, which validates the system’s reliability [Pal+20].

As denoted in eq. (4.2.3), it is defined as the proportion of successful predictions and success-

ful connections of a given user [cf. Pal+20]:

10 The formula has been adapted from [Pal+20] to better fit into this work’s notation.

65

4 Chaos

𝑟@𝑘 = |successful(predictions@k)|
|successful(connections)| (4.2.3)

Although especially the former 𝑝@𝑘 eq. (4.2.2) is often by itself a very meaningful metric for

validating the usefulness of a RS as it evaluates that the top 𝑘 recommendations are actually

relevant to the user, it is sometimes necessary (or wished) to aggregate both metrics to one

single score [see NP19a, eq. 11]:

𝑓 1@𝑘 = 2 ∗ 𝑝@𝑘 ∗ 𝑟@𝑘
𝑝@𝑘 + 𝑟@𝑘 (4.2.4)

This metric, named F1 Score, makes use of the harmonic mean which we encountered before

in section 3.1.2.1, eq. (3.1.5). Notably, if both metrics are equally important to the researcher,

they need to be aggregated: The same holds for the aggregation of preferences for the recom-

mendation subject and each of the top 𝑘 recommendation objects (see section 3.1.2.1) with a

RRS. The attentive reader will notice that we did not consider reciprocity in the metric defi-

nitions yet. In fact, the metrics were only one-sided until now. As pointed out in table 3.2.1,

reciprocity requires overriding the successful operator/term:

successful(E) ≔ {(𝑢, 𝑣) ∈ E and (𝑣, 𝑢) ∈ E} (4.2.5)

Consider that we use the build_prediction_graph function that returns a predicted graph

of recommendations. We reiterate that “the recommendation is successful if both users re-

spond positively to it” (see table 3.2.1). Applied to the data model of Chaos, this means that

only the bidirectional edges (connections) in the graph should be considered as successful,

that is, a pair of nodes 𝑢, 𝑣 where 𝑢 is connected to 𝑣 , and 𝑣 is connected to 𝑢.

To summarize: The above definitions hold true for both, non-reciprocal and reciprocal user-

to-user RSs, but the latter require an additional check if the object 𝑣 is connected to the

subject 𝑢. This has been shown in a similar way before by the ReciprocalCG in fig. 4.2.7. As

pointed out in [NP19a], for RRSs, it is even more important that the recommendations are of

a high quality at 𝑘 (precision, eq. (4.2.2)) than being able to recall all successful connections

(eq. (4.2.3)), because the “cost of failure” is higher and double-sided through reciprocity.

66

4.2 Core Components

4.2.5.2 Example and Summary

Consider the synthetic interaction graph consisting of two study communities11 in fig. 4.2.9

as an input: The violet nodes indicate users who study “MCD” and the blue-green nodes

indicate users who study “ISE” (this is the “course” attribute/column from fig. 4.2.3).

Figure 4.2.9: Interaction Graph with two different courses

11This is the same graph that is used in the optional notebook 4.2.1.

67

4 Chaos

Listing 4.2.6 describes how the LFMEvaluator (which uses the evaluation algorithms pro-

vided by the LightFM package) is used in conjunction with multiple differently configured

LFMPredictors.

 Listing 4.2.6: Evaluation of 3 different predictors

1 hp = {'learning_rate': 0.003, 'no_components': 32}
2 evaluator = LFMEvaluator({
3 'Hybrid, course with ID':
4 LFMPredictor(LFMTranslator(dm, ['course']), **hp),
5 'Hybrid, course + popularity with ID':
6 LFMPredictor(LFMTranslator(dm, ['course', 'popularity']), **hp),
7 'Collaborative Filtering only':
8 LFMPredictor(LFMTranslator(dm, []), **hp)
9 }, translator.interaction_matrix, test_split=0.3
10)
11 evaluator.run_all(epochs=range(0, 144, 4))
12 evaluator.create_report().show()

All of the models share the same hyperparameters, denoted by hp in the first line of list-

ing 4.2.6 (a learning rate of 0.003 and and a dimensionality of 32). For the purpose of this

example, we intentionally overfit (massively) here by training each predictor for a total of

140 epochs with 35 data points (line 11). The interaction graph is split into 70% training data

and 30% test data (see line 9). Afterwards, we create a report in form of multiple charts and

render it, see fig. 4.2.10.

The upper row in the diagram fig. 4.2.10 shows the results based on the train data set (y-axis

label “train”), the lower row shows the results based on the test data set (y-axis label “test”).

Each column represents a predictor (the titles are analogous to the dictionary keys/identifiers

in listing 4.2.6). As shown by the raising lines, each epoch (x-axis) fits the model more to the

training data, but also more to the test data in this specific example.

Among the already known precision (eq. (4.2.2)) and recall (eq. (4.2.3)) metrics, this implemen-

tation additionally supports one other metric that we did not examine yet, the AUC score.

AUC is the probability that for a given user, a randomly chosen successful connection is

ranked higher than a randomly chosen connection that is unsuccessful [Goo20] [Kul15] (for

implicit feedback, every edge that is not in the interaction graph). Other than the metrics

68

4.2 Core Components

Figure 4.2.10: Evaluation report: Chart comparison of 3 predictors and 4 different metrics

before, AUC is scale-invariant: 1.0 means the RS is always correct and 0.0 means the model

is always wrong (the middle of 0.5 represents a random-based predictor, i.e. simply choosing

two random nodes).

The results in fig. 4.2.10 are interpreted as follows: While the rightmost CF model performs

best on the training data in the first row (it has plenty of room to adjust each individual

training user’s embeddings represented by the indicator feature, see section 2.2.3), it per-

forms worst on the test data in the second row, with an AUC that is slightly better than

random. The two leftmost hybrid predictors have the advantage of embedding the “course”

feature: There is a clear pattern of two communities; the graph could be partitioned into

two communities by simply cutting the connection between the nodes “Lo.” and “Ka.”. The

underlying algorithm (see section 4.3.1) learns that “MCD” users prefer “MCD” users and

“ISE” users prefer “ISE” users. The hybrid model in the center adds popularity as a feature

(see section 4.2.3 for feature extraction). This experimental feature has been added with the

intention to alleviate the popularity bias (see section 2.3.3). To some level, the model learns

the relation between the nodes’ popularity (for instance, do “medium”-popular users pre-

fer other users with a comparable popularity? If so, the model will learn that). Moreover,

69

4 Chaos

we can clearly see the overfitting, especially with the “Collaborative Filtering only” model,

since the maximum is reached at a very early epoch. This suggests that we should tune the

epochs and/or the learning_rate. Finding effective and efficient parameters is important

and time-consuming, but Chaos aims to help the researcher with finding the best predictor

by offering the comparative report (fig. 4.2.10) for their parameter configurations and com-

binations. The described learned behavior is also indicated in listing 4.2.7 where we sample

recommendations based on the best predictor for the 𝐹1@5 metric:

 Listing 4.2.7: Recommendations from best predictor at F1 metric

1 res = evaluator.best_of_all('f1')
2 print(f”Best F1: '{res.predictor}' @ epoch {res.epoch} with {res.value}”)
3 # Out: Best F1: 'Hybrid, course with ID' @ epoch 104 with 0.286
4 predictor = evaluator[res.predictor]
5 print(best_predictor.predict('St.'))
6 # Out: {'Lo.': 0.95, 'An.': 0.81, 'Va.': 0.78, 'Mo.': 0.58, 'Na.': 0.56}
7 print(best_predictor.predict('Iv.'))
8 # Out: {'Ho.': 1.00, 'Ya.': 0.86, 'Lé.': 0.83, 'Ka.': 0.77, 'Ad.': 0.59}
9 print(best_predictor.predict(User.from_data({'course': 'MCD'})))
10 # Out: {'St.': 1.00, 'Lo.': 0.85, 'An.': 0.71, 'Va.': 0.70, 'Mo.': 0.56}

Listing 4.2.7 shows how we first select the “Hybrid, course with ID” model that performed

best on the F1 metric. Thereafter, in lines 6 to 10, we produce top 𝑘 = 5 predictions rec-

ommendations by using predict, with relative scores that represent the model’s confidence

that the order is correct: First, we predict for the non-cold-start user “St.” studying “MCD”.

The result shows that it does not simply (re)produce recommendations based on the direct

neighbours. Next, the prediction for the cold-start user “Iv.” with course “ISE” confirms

that only users from the course “ISE” are recommended. Lastly, the prediction based on an

inline-constructed user for the data {'course':'MCD'} highlights the powerful advantage

of LFMPredictor’s hybrid capabilities inherited from LightFM: Users can be estimated on-

the-fly as a sum of their latent feature vectors, see section 2.2.3.1, without prior training.

For this purpose, the LFMPredictor internally constructs a weighted feature matrix for the

provided user (see the upcoming section 4.3.1 for user-to-user details).

70

4.2 Core Components

 Example 4.2.2: Bias - Good or Bad?

We introduced bias here: The model will learn that the two communities are histor-

ically mostly separated and that they prefer to stay among themselves. Algorithmic

specialization always requires some degree of bias – in that sense, the inductive bias
(section 2.3.3) is a potentially good mechanism for prediction, as “learning involves

the ability to generalize from past experience in order to deal with new situations that

are ’related to’ this experience.” [Mit80] (1980 paper about ML-bias).

It would be entirely different if a human chose to only include a subset of nodes so

that “an underrepresentation or overrepresentation of observations from a segment of

the population” [HDB20] is introduced. In that case, the model would suffer from a

sampling bias (also called selection bias) which typically happens in the data generation

process and should be avoided at all cost.

If interdisciplinary work between the two study communities is wished, one could

reinforce these connections by assigning a higher strength (e.g. 2 ∗ 𝑠(𝑢, 𝑣) eq. (4.2.1))
to inter-community connections than intra-community connections. It often depends

on the objective and leaves further room for discussion, see also [HDB20], especially

“The world as it should be vs. the world as it is”.

Finally, two important considerations have to be made: Training based on an interaction

graph with only few nodes and edges as shown in fig. 4.2.9 typically results in overfitting

very fast (i.e. in an early epoch, dependent on the learning rate). Additionally, it implies

that there are only a few edges in the test set available, which explains the relatively high

variations between the data points in fig. 4.2.10; subsequent model training runs would per-

form very differently depending on the random set of edges to be chosen in the train/test

set, partly leaving some nodes to cold-start (e.g. consider that both edges from and to user

“Me.” in fig. 4.2.9 would be removed from the train set and put in the test set). Additionally,

full reproducibility is not possible as the LFMPredictor uses LightFM’s parallelized version

of SGD with random initialization, always resulting in a non-deterministic output per run

(unless fixed to one single thread and a consistent random seed which can be accomplished

by properly calling the constructor, but leads to a performance penalty).

Second, the LFMEvaluator does not calculate reciprocal metrics (see eq. (4.2.5)), as it re-

lies on LightFM’s evaluation algorithms, a library which was not developed for recipro-

cal recommendations (but as shown in the following section 4.3.1, the library is suitable

71

4 Chaos

to be adapted accordingly on the recommendation side). For cross-algorithm and cross-

validation based reciprocal evaluation, the GraphEvaluator prototype is currently12 being

tested, which will support all implementations of the Predictor interface by internally call-

ing the build_prediction_net function (see outlook section 5.3.3). At a later point, the

LFMEvaluator class in listing 4.2.6 can simply be interchanged and the other code parts stay

the same, because both classes are descendants of the EpochBasedEvaluator.

12at the time of writing (January 27, 2021)

72

4.3 Recommendation Algorithms

4.3 Recommendation Algorithms

In the following, we explore the supported reciprocal recommendation algorithms of Chaos.

All of the mentioned algorithms are based on the assumption that similar users like similar
users. This is supported by the majority of RRS papers [Pal+20] [Ake+11] [Xia+15] and a

precondition for CF to work well – just as in traditional RSs (see section 2.2.2), we assumed

that similar users like similar items.

4.3.1 LFMPredictor - Hybrid Model using LightFM

The latent factor model LightFM, which has been introduced in section 2.2.3, usually works

with users and items. For Chaos, we need to adapt the model input in order to make user-to-

user recommendations possible. We divide the alterations into two categories, content and

collaborative – both sides representing the input of the LightFM model’s hybrid nature:

1. Content: Only one feature matrix is needed and constructed, that is, the users’. It is

inputted for both, the item matrix parameter as well as the user matrix parameter [cf.

KC20]. Referring to section 2.2.3.1, we set 𝐹𝑈 = 𝐹 𝐼 . Therewith, we only change the

external parameterization and not the internals of the LightFM model, which means

that both earlier introduced equations eq. (2.2.11) and eq. (2.2.12) are still valid. To

convert the data model in section 4.2.1 to LightFM’s model, the LFMTranslator iterates

through each row of the user profile DataFrame and sets a normalized weight to each

included content feature of the user, with 𝑓𝑢 ⊂ 𝐹𝑈 = 𝐹 𝐼 ⊃ 𝑓𝑖 (see section 2.2.3.1).

2. Collaborative: The interaction graph is translated by going through each edge (𝑢, 𝑣) ∈
𝐸 and setting 𝑠(𝑢, 𝑣) (eq. (4.2.1)) for the 𝑢th row and 𝑣th column in the interactionmatrix

format the LightFM model expects. In accordance with Chaos’ data model, the matrix

is comparable to an adjacency matrix (section 4.2.1.1) and has a shape of |𝑉 |2 with 𝑉
denoting vertices (users), but its true memory footprint is much smaller, as LightFM
uses sparse matrices [KC20].

These are the only alterations of model input parameters that were needed. From a purely

practical developer’s perspective, it is important to keep these in mind, as when calling the

LightFM model’s API methods, parameters are named according to a user-to-item RS, that

“is not aware of” that it actually contains user-to-user data. Overall, by not changing the

internals of the LightFM model or re-implementing parts of it, we ensure a high reusability

73

4 Chaos

of LightFM’s code base and a high transparency of the LFMPredictor: Interested readers can

simply refer to the LightFM paper [Kul15] (if necessary complemented/accompanied by the

software manual [KC20]) and replace the above alterations in the formal model description.

Putting all together, if we now call the LFMPredictor’s predict method for 𝑢 as shown

in listing 4.2.7, we calculate the preferences for each candidate in 𝐶𝐺(𝑢) and get the 𝑘 top

recommendations objects 𝑣 ∈ 𝑅𝑆(𝑢):

𝑅𝑆(𝑢) = {𝑣 ∶ 𝑝(𝑢, 𝑣) > 𝑝(𝑢, 𝑤) ∀𝑣 ∈ 𝑅 ⊆ 𝐶𝐺(𝑢), ∀𝑤 ∉ 𝑅 ⊆ 𝐶𝐺(𝑢)}with |𝑅𝑆(𝑢)| = 𝑘 (4.3.1)

Equation (4.3.1) shows the previous eq. (3.1.1) with the added candidate generator 𝐶𝐺(𝑢)
(from section 4.2.4.2) and limiting 𝑘. Internally, 𝑝(𝑢, 𝑣) returns a score which LightFM accom-

plishes by calculating the dot product [see Kul15, eq. 1]13 of 𝑞𝑢 (eq. (2.2.12)) representing the

subject user 𝑢, and 𝑝𝑖 (eq. (2.2.11)) representing the object user 𝑣 . The scores are normalized

in a post-processing step by Chaos, as the LightFM model outputs a value that is potentially

negative. The score value is used solely to order recommendations relative to the user (the

higher, the better) [KC20], as we are dealing with an implicit feedback model where the goal

is to optimize and predict the ranking (and not rating values). The post-recommendation

normalization that Chaos performs is only a means of mapping the user-scoped ranking to a

value in the interval [0.0, 1.0] as described in section 3.1.2.1.

At this point, we successfully transformed the hybrid user-to-item RS model LightFM to a

user-to-user RS simply by altering its input values, but it does not fulfill the reciprocal criteria
from eq. (3.1.2) yet:

𝑅𝑅𝑆(𝑢) = {𝑣 ∶ 𝑣 ∈ 𝑅𝑆(𝑢) and 𝑢 ∈ 𝑅𝑆(𝑣)} (4.3.2)

As repeated in eq. (4.3.2), it requires that each recommendation object 𝑣 also has 𝑢 in the

recommendation list (compare with the more detailed eq. (3.1.3)). For this purpose, Chaos

provides a universal ReciprocalWrapper that aligns the scores of a regular non-reciprocal

Predictor by fusing the preferences of 𝑢 and 𝑣 , described in the next section 4.3.2.

13For completeness and correctness: The original formula is slightly more extensive, involving an added bias
term for the features (𝑏𝑖 + 𝑏𝑢) and a sigmoid function 𝑓 applied to the result.

74

4.3 Recommendation Algorithms

Notably, a conceptually similar approach has been introduced with LFRR (Latent Factor Re-

ciprocal Recommender) in [NP19b], but in contrast to Chaos’ LFMPredictor, a two-class
RRS is proposed that calculates the dot product of “Male Users” and “Female Users” (and vice

versa), as illustrated in fig. 4.3.1. In terms of Chaos’ data model language, LFRR would only

work on bipartite interaction graphs, as it focuses on heterosexual dating SNSs. As noted in

the analysis of requirements in section 3.3.2, this is very restrictive for amulti-purpose frame-

work: For instance, the graph presented in fig. 4.2.9 could not be used as an input, as its users

are not dividable into two disjoint partition sets (see section 3.1.2.2 for two class criterion).

Additionally, the LFRR model is limited to explicit feedback (like and dislike interactions)

over observed values only with an added regularization term, thus using a formal definition

that is essentially similar to the matrix factorization objective eq. (2.2.9), cf. [NP19b, eq. 10].

For this reason, the same disadvantages of explicit feedback over observed ratings only, as

mentioned in section 2.2.3.2, apply here.

Figure 4.3.1: Conceptual overview of the LFRR model [NP19b]

Source: [Pal+20]

4.3.2 ReciprocalWrapper - Reciprocity Enabler

The ReciprocalWrapper acts as a symmetric preference fusing facade: It does not contain

any recommendation algorithm on its own, but instead delegates recommendation tasks to

the aggregated Predictor (see UML fig. 4.3.2).

The basic algorithm is outlined as follows, referring to listing 4.3.1:

75

4 Chaos

• Line 5: Predict 𝑘 objects for subject user 𝑢 (see eq. (4.3.1)).

• Line 6 - 11: Predict for each object 𝑣 the score for user 𝑢 (see eq. (4.3.2)). Retrieve

recommendations for 𝑣 from (optional) cache or put to cache if needed.

• Line 11: Fuse preferences of each pair 𝑢, 𝑣 according to an aggregation strategy (see

eq. (3.1.3)), more details below.

• Line 13 to 16: Optionally, calculate rank violations to measure the effectiveness of the

aggregation strategy (or the ReciprocalWrapper overall).

 Listing 4.3.1: Fusion of preferences using an aggregation strategy

1 def predict(self, u, k: int = 5) -> Scores
2 ku = round(k * self._ku_factor)
3 kv = round(k * self._kv_factor)
4

5 u_scores = self._u2u_predictor.recommend(u, ku)
6 for v in u_scores:
7 # Retrieve predictions from cache if flag set:
8 if (v_scores := self._from_cache(v, kv)) is None:
9 v_scores = self._predictor.recommend(v, kv)
10 self._put_to_cache(v, v_scores) # Put to cache if flag is set
11 u_scores = self._aggregation_strategy.fuse(u, v, u_scores, v_scores)
12

13 if self._stats_enabled:
14 scores = list(u_scores.values()) # Scores are not yet sorted
15 self._stats['rank_violations'][u] = sum([scores[i] < scores[i + 1]
16 for i in range(len(scores) - 1)])
17 return {v:s for v,s in sorted(u_scores.items(), key=lambda vs: -vs[1])[:k]}

The aggregation strategy from line 11 can be exchanged to any implementation of the ab-

stract AggregationStrategy, as shown in the class diagram fig. 4.3.2. The default behavior

of the fuse method is to call the score method with 𝑝(𝑢, 𝑣) and 𝑝(𝑣, 𝑢) (i.e. it resolves to

𝑟𝑝(𝑝(𝑢, 𝑣), 𝑝(𝑣, 𝑢)) as in eq. (3.1.3)), modify the score dictionaries of 𝑢 and 𝑣 (in-place), and

return the score dictionary of 𝑢. Although this might seem overly complicated at first, it has

been designed with keeping a broad spectrum of possible aggregation use-cases in mind (for

76

4.3 Recommendation Algorithms

instance, also including the intersection of both preference lists by some extinct to reweigh

scores based on recommendation list similarities). The ku_factor and kv_factor are mul-

tipliers to increase the recommendation list sizes of the subject and each object relative to 𝑘
to increase the chances that u is found in the list v_scores. The algorithm is therewith of

an approximate nature if ku or kv is (too) small, but it highlights the increase in complexity

through reciprocity.

Figure 4.3.2: ReciprocalWrapper and AggregationStrategy classes

 Example 4.3.1: Expensiveness of Reciprocity

Fusing the preferences as described in section 3.1.2.1 is at least ku-times (see line 3)

more computationally expensive than traditional one-sided recommendations. In the

worst case, the re-ranking does not even occur, thus not necessarily improving the

predicted reciprocity (e.g. if ku/kv is too small). The increase in run-time is commonly

found in RRS algorithms, which is why they are often subject to optimizations [NP19b]

[Pal+20]. This is also highlighted by the algorithm in the following section.

The MeanAggregationStrategy accepts a function that is used to calculate in score, with

the added possibility of prioritizing the preferences of 𝑢 or 𝑣 (as shown before in eq. (3.1.4)).

The class also features a diverse set of pre-defined statisticalmeans and functions, see fig. 4.3.3.

It supports all of the Pythagorean means as mentioned in section 3.1.2.1, the quadratic mean
(root mean square) and the cross-ratio uninorm [App+17]. Although the harmonic mean is

77

4 Chaos

a sensible choice in many cases [Pal+20], including more functions has been motivated by

[NP19a], which puts the different strategies into comparison. Interestingly, with its mixed

behavior, the cross-ratio uninorm has been outperforming the other means in an evaluation

for a large dating SNS by using the RCF algorithm [NP19a], to which we will come next.

Figure 4.3.3: Samples of 𝑝(𝑢 ∈ {0.2, 0.4, 0.6, 0.8}, 𝑣) suitable for MeanAggregationStrategy

4.3.3 RCFPredictor - Reciprocal Collaborative-Filtering

In the following, we describe a reciprocal in-memory CF method (see section 2.2), which

has been introduced by Xia et al. in 2015 [Xia+15]. Initially tested on a large heterosexual

dating SNS and therewith specialized in bipartite networks (two-class RRS) [Xia+15], is is also

usable in single-class RRS approaches like Chaos – given an appropriate similarity measure.

As it was one of the first in-memory CF methods that fulfills the definition of reciprocity

(eq. (3.1.3)) and outperformed[Xia+15] the early reciprocal CBF approach RECON [Piz+10b],

it has later been referred to as Reciprocal Collaborative Filtering (RCF) and considered as a

baseline algorithm for RRS by some studies [Pal+20] [NP19a].

RCF essentially provides an algorithmic frame where a neighbourhood exploration function

𝑛 and a similarity measure function 𝑠𝑖𝑚 can be placed in. Two of these behavioral similarity

measures are suitable to be used in a single-class RRS [Pal+20] and described as follows. The

interest similarity captures the interaction sending similarity of two nodes𝑤 and 𝑥 [Xia+15]14:

𝑠𝑖𝑚𝐼 (𝑢, 𝑣) ≔
| 𝑛+(𝑢) ∩ 𝑛+(𝑣) |
| 𝑛+(𝑢) ∪ 𝑛+(𝑣) | (4.3.3)

As denoted in eq. (4.3.3), it is given by the well-known Jaccard-coefficient between the set

of nodes to which 𝑢 has sent an interaction and the set of nodes to which 𝑣 has sent an
14Our notation is based on a node’s out-degree deg+ and in-degree deg−, not to be confused with like/dislike.

78

4.3 Recommendation Algorithms

interaction. By contrast, the attraction similarity captures the interaction receiving similarity

of two nodes 𝑢 and 𝑣 [Xia+15]:

𝑠𝑖𝑚𝐴(𝑢, 𝑣) ≔
| 𝑛−(𝑢) ∩ 𝑛−(𝑣) |
| 𝑛−(𝑢) ∪ 𝑛−(𝑣) | (4.3.4)

RCF does not need any separate model like the LFMPredictor in section 4.3.1 and works

natively on Chaos’ DataModel (see section 4.2.1). As a pure CF algorithm, it also does not

consider any of the user profile data (section 4.2.1.2) and solely relies on the interaction graph

(section 4.2.1.1). The framework provides a close-to-definition implementation of the neigh-

bourhood exploration functions 𝑛− (in_neighbours) and 𝑛+ (out_neighbours), as well as

the similarity functions 𝑠𝑖𝑚𝐼 (interest_similarity) and 𝑠𝑖𝑚𝐴 (attraction_similarity):

 Listing 4.3.2: Neighbourhood exploration and similarity function definitions

1 def in_neighbours(self, u): return {e.u for e in self.graph.edges(to=u)}
2 def out_neighbours(self, u): return {e.v for e in self.graph.edges(from=u)}
3

4 def jaccard(self, s1, s2): return len(s1 & s2) / len(s1 | s2) # helper
5 def interest_similarity(self, u, v): # → 𝑠𝑖𝑚𝐼
6 return self.jaccard(self.out_neighbours(u), self.out_neighbours(v))
7 def attraction_similarity(self, u, v): # → 𝑠𝑖𝑚𝐴
8 return self.jaccard(self.in_neighbours(u)), self.in_neighbours(v))

These are the configuration options of the algorithm. The algorithm itself is implemented

compliant to the pseudo-code from [Xia+15, Algorithm 1]15 in a seamless way:

1 def predict(self, u, k: int = 5) -> Dict[str, float]:
2 neighbours = in_neighbours # choose inbound neighbours (→ 𝑛−)
3 similarity = interest_similarity # choose interest similarity (→ 𝑠𝑖𝑚𝐼)
4 scores = {}
5 for v in [self.graph[c] for c in self._cg.retrieve_candidates(u)]:
6 score_uv = 0.0
7 score_vu = 0.0

15alternatively compare with [NP19a, Algorithm 1] or [Pal+20, Algorithm 2]

79

4 Chaos

 Listing 4.3.3: RCF algorithm implementation in Chaos

8 # Explore and compare v's neighbourhood
9 v_neighbours = neighbours(v)
10 for vn in v_neighbours:
11 score_uv += similarity(u, vn)
12 # Explore and compare u's neighbourhood
13 u_neighbours = neighbours(u)
14 for un in u_neighbours:
15 score_vu += similarity(v, un)
16 # Normalize
17 if len(v_neighbours) > 0: score_uv /= len(v_neighbours)
18 if len(u_neighbours) > 0: score_vu /= len(u_neighbours)
19 scores[v.name] = self._aggregation.score(score_uv, score_vu)
20 return {v: s for v, s in sorted(scores.items(), key=lambda vs: -vs[1])[:k]}

For simplicity, we describe one instantiation of the generic algorithm, where the neighbour

function is set to 𝑛− and the similarity function 𝑠𝑖𝑚𝐼 (see eq. (4.3.3)) is used (lines 2 and 3).

This represents the “CF2” configuration in [Xia+15, p. 10] and the described “Algorithm 1” in

[NP19a]. The latter source used this configuration as a reference implementation to compare

various preference aggregation functions (as noted at the end of section 4.3.2).

The example listing 4.3.3 in accordance with eq. (4.3.3) and [Xia+15] demonstrates that Chaos

enables researchers to implement graph algorithms that are very close to their scientific

representation. We included two of the commonly found theoretic definitions (eq. (4.3.3)

and eq. (4.3.4)) specifically for this reason here, as they highlight that Chaos aims to be the

link between mathematical definitions and real-world implementations; a link that helps

with the researcher’s overall comprehension and therewith contributes to reproducibility.

Furthermore, with RCF joining the team of Chaos’ algorithms, we support a relevant baseline

algorithm for future evaluation and comparison of algorithms.

80

4.4 Chaos for GitHub

4.4 Chaos for GitHub

With GitHub being one of the major cloud solutions for collaborative Git-based version con-

trol that offers a DevOps-toolchain for the lifecycle of information systems, it is a particularly

interesting platform where users could benefit from social and reciprocal recommendations

for finding code collaborators, project members or suitable skill sharing partners in general. At

first sight, it might have a strong focus on repositories (where code is hosted), which would

be an argument that it would profit more from a traditional user-to-item RS. Still, the main

drivers behind the repositories are humans after all, who often search for other collaborators

to bring a project forward.

Hence, it serves as an exciting platform to try out Chaos where we can demonstrate how to

utilize a public third-party service to enable reciprocal recommendations, with real produc-

tion data.

 Notebook 4.4.1: Interactive GitHub Chaos Scenario

This part of the thesis is interactive. Please refer to “Scenario 2: Chaos for GitHub” for

instructions. The goal of the scenario is to generate a highly personalized network for

the reader’s provided GitHub username that can be used to train a latent factor model.

At the end, we visualize the embeddings with the TensorBoard Projector so that they

can be explored interactively.

4.4.1 Data Generation

First, we explore the interaction and user profile data. Knowing the platform and exploring its

data is one of the first (and most important) key steps. Relating to the preliminary workflow

in fig. 4.1.1, it contributes to the first task “Select features/interactions”. Next, after we have

decided which interactions and features are useful (section 4.4.1.1), we need to source the

original data (section 4.4.1.2). Because we work in a restricted environment without access

to a full open dataset, bound to a specific API request limit, we propose an algorithm that

focuses on finding reciprocal user connections suitable for training (section 4.4.1.3).

81

4 Chaos

4.4.1.1 Interactions and User Profile

In this section, we start with the interactions between GitHub users to highlight our findings

from the introduction to reciprocity (section 3.1) that the “root of reciprocity” lays in the

environment’s existing interactions. Thereafter, we consider important GitHub user profile

data for the CBF part of our hybrid model to be trained.

On GitHub, users can interact with each other directly (e.g. collaborating or following) or

indirectly by interacting with a user’s repository (most commonly watching or cloning). In

table 4.4.1, we identify and describe representative interactions and estimate the implicit
feedback strength for each. On the platform, a publicly usable explicit feedback mechanism

that directly works on repositories or users does not exist (therefore, the stars are not to

be confused with explicit feedback as shown in fig. 2.1.1). This underlines the advantages

of implicit feedback mentioned in section 2.2.3.2, especially the wide data availability, and

it highlights Chaos’ strength as a framework specialized in this type of feedback (see sec-

tion 4.2.1.1).

Table 4.4.1: Representative GitHub interactions and (estimated) implicit feedback strength.

Interaction Entity Symmetric Feedback Strength

 Follow User ○

 Collaborate User

⋆ Star (Like) Repository ○

 Watch Repository ○

 Clone Repository ○

Following another user can be seen as a powerful one-time feedback signal towards liking

the other user. Collaboration is similar, but slightly less bound to the user and instead to

a project work (and can occur multiple times), adding a star to a repository potentially ex-

hibits interest towards the user (comparable to liking a post in a classic SNS) – whereas we

consider watching or the extremely common cloning of a repository not as a direct sign of

positive feedback towards the user, although watching at least shows a small amount of in-

terest in the user’s work (therefore rated with a strength of 1 out of 5 stars). Please note

that the strength column only provides a guideline. For instance, if the objective is to find

suitable project partners (collaborators) and there are strong signs that the collaboration was

successful (i.e. similar commit count or activity in the project), then the collaborate interac-

82

4.4 Chaos for GitHub

tion might be a more powerful feedback signal than follow. Lastly, table 4.4.1 supports our

argumentation that GitHub is likely to profit from reciprocal recommendations because at

least one symmetric interaction is present (see previous section 3.1.2.3).

Referring to the “Entity” rows in table 4.4.1, an interaction with a repository can be inter-

preted as a transitive (or indirect) implicit feedback signal towards the user who owns the

repository (connecting start and end node):

Alice
likes−−−−→ Repository

created by−−−−−−−−→ Bob ⟹ Alice
likes−−−−→ Bob? (4.4.1)

Following this inference, there is a probability that Alice also likes Bob. Note that this might

be applied to other user-to-item relationships, too (it is not specific to GitHub repositories) –

for instance, given that Alice likes amovie, there is a probability that she also likes its director.

It highly depends on two points: First, on the degree the owner identifies herself/himself with

the item and second, how much the interaction-emitting user is aware of the item-owner-

relationship and includes the information in her/his decision process. For completeness, it

should be noted that there are a lot of other interactions which we left out in the exemplary

table 4.4.1 that have a more complex feedback interpretation. To name a few: accepting

pull requests, performing code reviews, writing an issue, answering to an issue, assigning a

user to an issue, adding a project member to an organization, opening a discussion (recently

introduced feature), adding a reaction emoji (e.g. thumbs-up) and many others. [Tea20]

Towards GitHub user profile data, users can optionally add regular textual profile features

such as location, public e-mail, company and bio (short text describing the user). Addition-

ally, users can upload an avatar image [Tea20]. Equally importantly, users define part of

their user profiles through their repositories. For instance, a developer who worked on a lot

of huge (or popular, e.g. in sense of received stars) Python projects is likely to be very profi-

cient in this programming language (without the need of stating it explicitly anywhere else).

Moreover, GitHub recently introduced a special repository (named after the username) that

can be used for the users’ self-representation to add amore detailed README about themselves

that is automatically rendered on the user’s profile page.

83

4 Chaos

 Example 4.4.1: Infer complex profile features

In the above, we only considered clearly visible features. However, features that are in fact not

immediately obvious (i.e. literally latent) can have a deep meaning – consider the following

example:

• Bob hosts a collection of beginner examples for the Flutter SDK in one repository, with

a total of 13 collaborators and 150 stars, published in October 2020. He promoted his

repository using various social media channels.

• Alice implements a Flutter library that enables state management for use with asyn-

chronous streaming, with a total of 3 collaborators and 30 stars, published in August

2020. She makes heavy use of GitHubWorkflows to automatically unit- and integration-

test the library.

Superficially, both repositories have in common that they are written in Flutter, but other-

wise, they can be interpreted very differently: Although stars might be a good indicator for

usefulness, they are not necessarily good for estimating a user’s skills. Bob himself might not

be highly-skilled in Flutter, as his repository is a collaborative work of a collective nature

(notably, each collaborator has an own “skill-share” here) whereas Alice can be viewed as a

Flutter expert who follows modern practices. Therefore, given complex feature engineering

steps, we could infer the following exemplary features to better estimate the skill level: repos-

itory type, contribution factor (degree of own work), novelty vs. reproduction, code quality,

best-practices, promotion/publicity factor and publication time. Putting these together, the

features can be boosted with the usefulness given by the stars to estimate the skill.

In summary, the many social capabilities indicate that GitHub can indeed be classified as a

SNS. The recent introduction of repository-based discussions and the ability to add extended

user profile information through a highly personalized repository reflects this direction of

the popular code collaboration platform.

4.4.1.2 Chaos GQL Specification

The data generation process is accomplished by using the GQLSource class (see fig. 4.2.4)

that retrieves data from a GraphQL API endpoint. The Chaos GQL specification defines the

relationship between user interactions and aGraphQL query_definitionwith a very simple

yet powerful DSL. It consists of three key elements:

84

4.4 Chaos for GitHub

• query_definition: The query is a GQL fetching operation, which is idempotent and

non-mutating, similar to the REST paradigm’s GET. In the specification, it is important

that the query accepts at least a string parameter with the username that identifies the

user to fetch. Multiple fragments can be referenced (see next item).

• fragments: Fragments are a built-in GQL method to compose a query consisting of

multiple scoped parts. In the specification, we utilize them to reference a specific part

of the query, as fragments can be easily referenced by their name, but also to further

aid readability as only a single query definition is supported.

• interactions: This is an extended version of the interaction specification from list-

ing 4.2.2, containing 3 special keys fragment_in (incoming interaction), fragment_out
(outgoing interaction) and fragment (symmetric interaction). They refer to the frag-

ment identified by the unique fragment name.

The specification becomes more clear with an example that is actually used for GitHub (some

elements are trimmed/collapsed for conciseness):

1 query_definition: >-
2 query QueryUser($login: String!) {
3 user(login: $login) {
4 ...userInfo
5 aboutRepo: repository(name: $login) { ...readmeContent }
6 repositories(privacy: PUBLIC, first: 10) {
7 nodes { ...repoInfo, ...repoMentionableUsers, ...repoStargazerUsers }
8 }
9 ...followers, ...following, ...starredRepoOwners
10 }
11 }
12 fragments: >-
13 fragment userInfo on User {
14 name, bio, avatarUrl, email, company, location, # ...
15 }
16 fragment repoInfo on Repository {
17 name, description, stargazerCount, forkCount
18 languages(first: 5) { nodes { name } }, # ...

85

4 Chaos

 Listing 4.4.1: Excerpt from original gql-spec.yaml

19 }
20 fragment readmeContent on Repository {
21 object(expression: ”HEAD:README.md”) { ... on Blob { text } }
22 }
23 fragment repoMentionableUsers on Repository # { ... }
24 fragment repoStargazerUsers on Repository # { ... }
25 fragment starredRepoOwners on User # { ... }
26 fragment followers on User { followers(first: 30) { nodes { login } } }
27 fragment following on User { following(first: 30) { nodes { login } } }
28 interactions:
29 star:
30 strength: 1.0
31 fragment_in: repoStargazerUsers
32 fragment_out: starredRepoOwners
33 communicate:
34 strength: 2.5
35 fragment: repoMentionableUsers
36 follow:
37 strength: 5.0
38 fragment_in: followers
39 fragment_out: following

As shown in listing 4.4.1, the fragments are referenced in query_definition, e.g. ...user-
Info stands for the expansion of the userInfo fragment that contains the attributes name,
bio etc. Some of the fragments are referenced in the interactions block at the end of

listing 4.4.1, describing the relationship between user nodes and their respective feedback

strength. The listing shows three different types of modelled interactions: star, communi-
cate and follow, cf. table 4.4.1. The communicate interaction which relies on the repoMen-
tionableUsers fragment is not equivalent to “collaborate”, but an indicator that the user has

previously interacted with the other user (in an undocumented way [cf. Tea20]) to be qual-

ifiable as a “mentionable user”. Therewith, the interaction is (only) an approximation for

communication between users, though a very useful one as it allows us to limit the query’s

complexity (and therewith also the computational cost, see next section).

86

4.4 Chaos for GitHub

With GraphQL, the query structure mirrors the result structure. This property is extremely

useful for self-documentation and aids the usability: It is always at hand what actually is

returned by the service. Additionally, most of the times, only one single query is needed

to retrieve a user in total (plus her/his “flat” neighbours in form of usernames), opposing

to REST, where clients would need to perform multiple requests to multiple endpoints per

resource resulting in a high complexity that would be much more difficult to describe in

a specification. Ultimately, the use of GraphQL greatly simplifies GQLSource’s automatic

in(tro)spection of the resulting structure to co-locate the interaction fragments for finding

neighbours. In the next section, the iterative process of building the interaction graph and

the user profiles by using the defined specification is explained.

4.4.1.3 Reciprocal BFS

Because the main goal when gathering training data for a reciprocal RS is in finding recipro-
cal connections, Chaos implements a modified BFS algorithm that prioritizes high-strength

reciprocal user neighbours. The algorithm is illustrated in a simplified form as follows:

1 def reciprocal_bfs(start_u: str, max_nodes: int, breadth: int) -> DataModel:
2 graph = InteractionGraph(self._interaction_spec)
3 profile_data = {}
4

5 seen_nodes = {start_u}
6 to_visit = deque()
7 to_visit.append(start_u)
8 for i in range(max_nodes):
9 if len(to_visit) == 0:
10 logger.warning(f”Stop @{i}. Could not fulfill max. of {max_nodes}.”)
11 break
12 u = to_visit.popleft()
13 interactions, profile_data[u] = query_user(u)
14 graph.add_interactions(interactions)
15 best_neighbours = [e.v.name for e in sorted(filter(
16 lambda e:e.v not in seen_nodes,graph.bidirectional_edges(from_node=u)
17), key=lambda e: e.strength, reverse=True)[:breadth]]

87

4 Chaos

 Listing 4.4.2: Simplified Reciprocal BFS algorithm of GQLSource

18 seen_nodes.update(best_neighbours)
19 to_visit.extend(best_neighbours)
20 return DataModel(graph, profile_data)

As outlined in listing 4.4.2, the BFS starts with the user start_u (lines 5 to 7) given by the

function parameter. Then, in line 13, the current user is queried by executing the GraphQL
query given by the query_definition from the specification (section 4.4.1.2). Additionally

to her/his profile data (stored in the temporary dictionary profile_data, all of her/his in-

teractions defined in the specification are then added to the interaction graph according to

their respective strengths (line 14). In the next step (lines 15 to 17), the actual prioritiza-
tion of neighbours occurs: First, all edges containing neighbours that are already “seen” are

filtered out. Then, the incident edges are sorted descending by their strength and the neigh-

bour nodes 𝑣 in the edge (𝑢, 𝑣) are added to the queue of nodes to_visit that still need to

be visited in a first-in first-out manner (limited by the breadth parameter). The algorithm

stops either with an early stopping criterion (if to_visit is empty) or if max_nodes could be

fulfilled as specified in the function’s parameter.

For GitHub, the GQLSource is initialized as follows to accomplish the above-described be-

havior.

 Listing 4.4.3: Initialization of GQLSource in conjunction with GitHub

1 gh_source = GQLSource(spec=yaml.safe_load(open('gql-spec.yml')),
2 endpoint='https ://api.github.com/graphql',
3 auth={'Authorization': 'bearer {token}'},
4 start_user='{USERNAME}', profile_key='user', neighbour_key='login',
5 breadth=7, max_nodes=5000)

As demonstrated by listing 4.4.3, even though a personalized access token is required by

auth, it has to be noted that any user on GitHub can be used as a start_user (GitHub

users are publicly discoverable). The token is only a means to fully exploit the API limit of

5000 points per hour for the free-tier [given by Tea20, “Resource Limitations”]. The more

complex a query gets, the more points it costs. Still, the query in listing 4.4.1 only consumes

1 point, therewith resulting in 5000 requests per hour and 5000 max_nodes as defined in

88

4.4 Chaos for GitHub

(a) Spring Layout (b) Spectral Layout

Figure 4.4.1: Two GitHub interaction graphs with 500 nodes with the same data, but each
having a different layout

the initialization listing 4.4.2. The profile_key is needed to store the user’s profile data

according to the structure defined in the specification (listing 4.4.1) from line 3 to 10 (result

is stored in a dictionary). The neighbour_key is used to locate the neighbour nodes – for

instance, given lines 23 to 25 of the specification (listing 4.4.1), the query_user algorithm

will recurse through the structure to find the login field (line 24).

At this point, it is very important to highlight that the resulting network is largely influ-

enced by the given start node. In other words, it arguably suffers from a selection bias (see

example 4.2.2) that is given by the start node’s 𝑢 past choices to some degree: The higher

the breadth parameter (and the lower the max_nodes), the more the network is influenced

(biased) by the start node. Setting breadth to a lower value will result in a graph that goes

“deeper” or farther away from the start node, thus lowering the selection bias, but making

the network less personalized for each user (not only for the start user). When using such a

network to generate recommendations for cold-start nodes, this should be kept in mind (cf.

section 4.2.5.2). Nevertheless, Chaos’ built-in reciprocal BFS shows a unique way to build a

highly personalized reciprocal network based on a third-party API.

Before continuing with the next steps, we can examine the graph that has been created with

help of the algorithm: Figure 4.4.1a and fig. 4.4.1b actually show the same GitHub inter-

action graph with 500 nodes (for better readability, we reduced to 10% of GitHub’s API

limit) in two different layouts (central nodes are made slightly bigger). The spring layout

89

4 Chaos

(left graph) positions the graph based on the edges simulating physical spring forces pulling

nodes together, and the nodes alone pushing themselves apart (“anti-gravitational”) [HSS08].

The spectral layout (right graph) calculates the distances based on the Eigenvector (cf. sec-

tion 2.3.2 Eigenvector centrality) [HSS08]. While both graph images are generally suited for

providing an overview of the reciprocal BFS algorithm’s (listing 4.4.2) output, their explo-

ration/interpretation capabilities are limited due to their large size in combination with the

static image nature. For this reason, a more interactive (standardized) graph exploration

interface is planned in a future release.

4.4.2 Feature Engineering

Continuing the process in fig. 4.1.1, after sourcing the original data, we need to further pro-

cess it. The previous example fig. 4.2.3 mainly showed data of a categorical and discrete

(non-continuous16) nature. Besides this simple data type, the user profile DataFrame sup-

ports dynamic-length data in form of iterables (sets for unique data). For the GitHub envi-

ronment, this is necessary and natural; users rarely enter the same amount of data, e.g. every

user has a different set of skills.

Figure 4.4.2 provides an illustrative overview for the whole feature engineering process of an

artificial GitHub user who we call “Alice” in the following. The upper part of the image de-

scribes the real and unmodified user profile. Alice is defined through her bio17, location and

corporation (not shown in fig. 4.4.2, see listing 4.4.1, userInfo) but also her repositories (see

listing 4.4.1, repositories). The lower coloured “Processed User Profile” describes Alice

after processing, defined through her specific dynamic-length “bins” (also commonly called

“bag-of-words”) that are used to organize the data. The bins represent the actual dynamic-

length data of the user profile iterables in the DataFrame. Users are free to enter anything in

the text fields: Therefore, finding text features that carry useful information becomes nec-

essary. We use spaCy to tokenize (sequencing words), remove stop-words (common words

of a language, e.g. “at” or “the”) and further lemmatize (finding the base form of a word,

e.g. “raining” → “rain”) and then store these features into the bio_tags bin. Moreover, we

use spaCys named-entity recognition pipeline [Hon+20] to find outstanding textual entities

16Except the continuous “age” field, which is later discretized in section 4.2.3.
17From here, whenever referring to “bio”, we refer to the actual size-limited profile bio concatenated with the

recently introduced special repository to enter extended information in a README

90

4.4 Chaos for GitHub

Figure 4.4.2: Processing GitHub user profiles by extracting textual features from bio and
repositories

and sort them into a suitable bin. For instance, the location_tags bin contains GPEs18

highlighted in orange in the user’s bio. Lastly, the repositories also carry useful informa-

tion; the programming languages (in Alice’s case, Java, Python and Flutter) and the user-

specified topics (basically a limited amount of tags, such as “framework”, “machine-learning”

or “recommender-system”). These are both put in the skill_tags bin accordingly. Most im-

portantly, the “Processed User Profile” is only an approximation of the real user, as in the

process, loss of information is inevitable. After all, this loss is not necessarily “bad”, as it is

useful for the model to generalize better; correlating features as outlined in section 2.2.3.1 is

easier when only a relevant subset of meaningful user features needs to be considered during

training.

That being said, the above outlined feature extraction is represented by the following code:

18For a full list of the supported named entities, see https://spacy.io/api/annotation#named-entities

91

https://spacy.io/api/annotation#named-entities

4 Chaos

 Listing 4.4.4: Pipeline for feature engineering

1 pipeline = SequentialPipeline([
2 # ...
3 SequentialPipeline(name='User Profile Preparation', processors=[
4 GitHubPreprocessor(skills_per_user=25, repo_languages_per_user=6),
5 TextConverter('bio', from_format=ColumnFormatType.MARKDOWN),
6 NLPEntityExtractor('bio', {
7 'GPE': 'location_tags', 'LOC': 'location_tags',
8 'ORG': 'org_tags', 'org_tags', 'NORP': 'org_tags'
9 })]),
10 ParallelPipeline(name='User Profile Categorization', processors=[
11 SequentialPipeline(name='Bio', processors=[
12 NLPTokenExtractor('bio', 'bio_tags'),
13 MostUsedExtractor('bio_tags', 'bio_tags', usage_threshold=2),
14]),
15 SequentialPipeline(name='Organizations', processors=[
16 NLPTokenExtractor('company', 'org_tags'),
17 MostUsedExtractor('org_tags', 'org_tags', usage_threshold=2),
18]),
19 SequentialPipeline(name='Location', processors=[
20 NLPEntityExtractor('company', {'GPE': 'location_tags'}),
21 NLPTokenExtractor('location', 'location_tags'),
22 MostUsedExtractor('location_tags', 'location_tags', usage_threshold=2)
23]),
24 SequentialPipeline(name='Process skills', processors=[
25 NLPEntityExtractor('repo_descriptions', {'%': 'skill_tags'}),
26 MostUsedExtractor('skills', 'skill_tags', usage_threshold=2),
27 MostUsedExtractor('repo_languages', 'skill_tags', top=40,

usage_threshold=2),↪

28 MostUsedExtractor('skill_tags', 'skill_tags', top=1000,
usage_threshold=2)↪

29]),
30]),
31])

92

4.4 Chaos for GitHub

The first part of the pipeline in listing 4.4.4 is omitted as it is essentially similar to the previous

listing 4.2.3. Line 4 shows the GitHubPreprocessor that extracts repository-specific infor-

mation such as topics (for the users, we interpret these as skills) and the repo_languages
to columns in the user profile DataFrame. Among other tasks, the highly specific prepro-

cessor also approximates a user’s activity and concatenates the bio with the text from the

special repository where users can post extended information about themselves (see note

in section 4.4.1 and line 21 in listing 4.4.1). This is followed by a Markdown-to-text conver-
sion in line 5 for the bio column, which is a preparing step for NLP; it strips the Markdown
syntax elements that users can freely use for formatting the bio. In the following lines, the

NLPEntityExtractor and NLPTokenExtractor are extensively used to extract textual fea-

tures of the fields via spaCy. Furthermore, the MostUsedExtractor strips away rarely used

(text) items via usage_threshold or limits the items based on occurrence19 to a specific top
value. Including words that are only used by a single user make them an indicator feature,

which is often not what we want for user profile data itself.

Summarizing, by using modern NLP techniques, Chaos’ automatized feature engineering

capabilities as firstly introduced in section 2.3.2 are complemented to simplify experiment-

ing with various textual features, thus helping researchers to embed typical user profile at-

tributes.

4.4.3 Results

In this last section, we inspect the results: Given the introductory workflow fig. 4.1.1, we

processed the data model (task “Process Data Model”), which is now ready to be fed into the

translator and model. In this section, we will go through the last tasks.

The dataset that we use as a foundation for the following experiment results has been created

at the January 18, 2021 using the author’s GitHub username20 as a start node. Reciprocal

BFS (section 4.4.1.3) has been initialized with 5000 max_nodes and a breadth of 7 nodes. The

Chaos GQL specification is likewise constructed as in listing 4.4.1 and the feature engineering

steps are by and large given in listing 4.4.4. The above overall parameters lead to a total of

4186 content profile features, described and distributed among the categories as follows:

19In the future, more sophisticated processing could make use of the inverse document frequency to measure
the relevance of a word in the text corpus, see [Agg+16, p. 145]

20https://github.com/kdevo

93

https://github.com/kdevo

4 Chaos

Table 4.4.2: Features, their occurrences, origins and overall restrictions

Feature Occurrences Profile Origin(s) Restriction(s)

 bio_tags 2174 Bio Used by ≥ 2
 skill_tags 1000 Repository Top ≤ 1000, Used by ≥ 2
 org_tags 543 Company, Bio Used by ≥ 2
 location_tags 469 Location, Bio, Company Used by ≥ 2

On top, 5000 indicator features are introduced, i.e. one per user (as described in section 2.2.3.1),

resulting in a total of 9186 features. Although the dataset is based entirely on publicly avail-

able data, for privacy reasons, we will not show any other GitHub usernames.

The graph density is given by ≈ 0.001055, where 1 is a fully connected graph and 0 a graph

with no edges at all. This means that we have ≈ 99.89%-sparse data at hand, but since

the LFMPredictor’s underlying LightFM was developed with sparsity in mind [Kul15], this

should not pose an obstacle.

The reciprocity is ≈ 0.7984, which is possibly unsurprising, as this is what the reciprocal

BFS (section 4.4.1.3) optimizes for. Nevertheless, it shows that many GitHub users tend to

reciprocate, further supporting the argument that it should be classified as a RE (suitable for

a RRS).

4.4.3.1 Evaluation

In the following, we evaluate different configurations of the LFMPredictor (comparable to

section 4.2.5.2). One of the advantages of the categorization of features into different “bins”

(as illustrated in fig. 4.4.2) is that we are able to easily select only a semantic subset of fea-

tures via LFMTranslator, so that we can test which feature categories are suspected to have

the most predictive properties. In addition to a simple list of features as shown before in list-

ing 4.2.6, the LFMTranslator supports (initial) normalized weighting of features by passing

a dictionary in the format '<feat>': <weight>.

Table 4.4.3 shows a variation of different configurations and their maximum result in the

test set for 𝑝@5 (precision at 5) and 𝑟@5 (recall at 5). Each icon in the “Feature/Weight”

column corresponds to the feature category from the previous table 4.4.2. We also compare

two different configurations of “Hyperparameters”; each sub-column stands for a LightFM

94

4.4 Chaos for GitHub

hyperparameter, 𝑑 denoting the dimensionality and 𝜂 denoting the learning rate. The “Hy-

brid all”, “Hybrid orgs + bio” and “Collaborative Filtering only” models were trained with

𝑑 = 48 and 𝜂 = 0.40. On the other hand, the “Hybrid all tuned” model was trained with

hyperparameters that have been found by using the the novel hyperparameter optimization

framework Optuna [Aki+19], with a smaller dimensionality of 𝑑 = 42 and a higher learning

rate 𝜂 = 0.418, among changes in the 𝐿2 penalties (eq. (2.2.8)) that are left out of table 4.4.3.21

Table 4.4.3: Different LFMPredictor configurations (features and hyperparameters)

Feature/Weight Hyperparameters Test (max.)

 𝑑 𝜂 𝑝@5 𝑟@5
Hybrid all 0.4 0.2 0.2 0.2 48 0.400 0.0414 0.1067
Hybrid all tuned* 0.4 0.2 0.2 0.2 42 0.418 0.0416 0.1075
Hybrid orgs + bio 0.0 0.0 0.5 0.5 48 0.400 0.0396 0.1022
Collaborative Filtering only 0.0 0.0 0.0 0.0 48 0.400 0.0363 0.0899

Figure 4.4.3: Evaluation report of the different LFMPredictor configurations (see table 4.4.3)

21Found with optimization objective on maximizing the F1 score, after 250 trials, 𝑑 ≤ 64 and a non-linear
search space for other hyperparameters. Details can be found in the class LFMHyperparameterOptimizer.

95

4 Chaos

Figure 4.4.3 shows the corresponding chart report, with 𝑝@5 (eq. (4.2.2)) in orange, 𝑟@5
(eq. (4.2.3)) in green and 𝑓 1@5 (eq. (4.2.4)) in blue. Additionally to the already named repre-

sentative configurations, we tested each feature category separately, where only-org_tags
and only-bio_tags gave the best results among them, but interestingly none of them out-

performed the combination of all features (i.e. “Hybrid all (tuned)”) on their own. The chart

report indicates that the hybrid model with optimized hyperparameters “Hybrid all tuned”

gives the best result with a precision 𝑝@5 ≈ 0.0416 at epoch 70 (of 70), but is overall very

close to the non-optimized version “Hybrid all”. This is interesting, because usually models

with a higher dimensionality also perform better [Kul15], as they are able to capture increas-

ingly complex latent relationships between the users’ and their profile features. Although the

tuned version has a smaller 𝑑 = 42 (smaller by 6 dimensions), it is still slightly better, which

likely is due to the other hyperparameters which are found to work better in combination.

For the above reason, we choose the “Hybrid all tuned” model and wrap it up via Recip-
rocalWrapper to fulfill reciprocity (see section 4.3.2). This model is less time-consuming

to train, faster for prediction tasks and uses approximately 12.5% less memory, all with a

similar (or slighly better) qualitative performance as the “Hybrid all” model. In conclusion,

performing a hyperparameter search/optimization prior to final model deployment after of-

fline training (section 4.1.1) is recommendable: In production, it enables a better performance

from a qualitative as well as computational perspective.

4.4.3.2 Explainability and Visualization

An important advantage of the hybrid model is its ability to help out with reciprocal as

well as non-reciprocal explanations (see previous section 3.3.1.4). To enable serving actual

user explanations, the LFMPredictor contains a similar_featuresmethod that (simplified)

calculates the cosine-similarity for a given tag and all other tags [adapted fromKC20] [Kul15],

sorts them and puts the top 𝑘 most similar ones inside a result data frame.

The three subfigures of fig. 4.4.4 (a to c) show the results of different tag queries with 𝑘 = 15
for three different feature categories (table 4.4.2): The tag fh (6 occurrences in bio_tags), the
tag rwth (13 occurrences in org_tags) and lastly the tag machine-learning (51 occurrences

in skill_tags). The count column in the result data frames represent the share in the total

occurrences of each category (see table 4.4.2) with background colours based on a heatmap

similar to the previous interaction graphs. We observe the following:

96

4.4 Chaos for GitHub

(a) fh (b) rwth (c) machine-learning

Figure 4.4.4: Different queries for GitHub user tag similarities

• The feature processing through section 4.4.2 adds some (unwanted) ambiguity. For in-

stance, “FH Aachen” was often split into two words (depending on the textual context)

and failed to be recognized as an organization as a whole. This is partly “as-defined”

behavior because of the tokenization (via NLPTokenExtractor), but also partly un-

wanted due to the chosen spaCy model22 for entity recognition in the bio (via NLPEn-
tityExtractor) which was trained on an English text corpus. Notably, the quality is

nevertheless good enough for the model to learn the semantic relationship between

profile attributes in the embedding space which we can query to retrieve interesting

similarities, as highlighted by the three examples.

• As we can see by the count of each result row and their varying occurrences, the

model is not simply repeating the user profiles by using a statistical count-based met-

ric: The model learns user similarities based on their interactions, i.e. the user profile

embeddings are adjusted to best fit to the input, that is, the interaction graph (see

section 2.2.3.1 in combination with the alterations in section 4.3.1).

That being said, although humans tend to see “structure in randomness” [Mun+17], observ-

ing and comparing the learned latent user profile feature embeddings is an explainability

advantage that not only helps the researcher to better comprehend and partly evaluate what

the model has learned, but also helps the end-user, e.g. by teaming up with the explana-

tion method from section 3.3.1.4. The same stakeholders profit from the user embeddings

visualization which we will analyze in the following.

22See https://spacy.io/models/en, en_core_web_md (medium-sized multi-task English model).

97

https://spacy.io/models/en

4 Chaos

Chaos’ LFMPredictor provides a built-in visualizemethod that dumps the embeddings in a

TensorFlow compatible format to retrieve insights into the complex (as in high-dimensional)

learned embeddings. That is, an embedding tensor which is serialized in a checkpoint file

and supplemented with a metadata CSV containing user profile tags. After dumping the

checkpoint, the TensorBoard Projector23 reads-in the files and offers an interesting way to

investigate the embeddings interactively, see screenshot fig. 4.4.5.

Figure 4.4.5: Using TensorBoard’s Projector to visualize and interpret latent user embeddings

The coloured markings in fig. 4.4.5 are explained as follows (from left to right):

1. Green: Select a dimensionality reduction algorithm that projects the embedding space

ℝ𝑑 →ℝ3 (or→ℝ2). 3D and 2D representations can be seen and interpreted by humans

(opposing to 𝑑 ≥ 4, such as 𝑑 = 42 as in the model at hand). Explaining the differ-

ent algorithms (namely UMAP, tSNE and the more simple PCA) is out of this thesis’

scope and they all have different pros and cons, depending on the goal that needs to

be achieved, e.g. finding possible clusters with UMAP as shown in the screenshot.

23Also available as a web app, see https://projector.tensorflow.org/

98

https://projector.tensorflow.org/

4.4 Chaos for GitHub

2. Blue: This is the author’s profile data; it shows a broad spectrum of different tags and

opens up when searching or clicking on a point (user).

3. Purple: The upper part of this panel can be utilized to search for a user by name

or by tags (regular expressions are supported) and the lower part makes it possible

to calculate 𝑘 neighbours either based on euclidean or cosine similarity (see the early

section 2.2).

Summarizing, the visualization provided by the TensorBoard Projector in fact serves the pur-

pose of a suitable explanation tool for researchers, fulfilling the mentioned guidelines in

section 2.3.4 by providing a domain-specific, familiar (as in “well-known”) and objectively

transparent interface.

4.4.3.3 Summary

All in all, we demonstrated the versatility of the framework Chaos by using it in the spe-

cific scenario of finding code collaborators and followers on GitHub. We first analyzed the

platform’s user interactions and profile data (section 4.4.1.1) and classified the platform as

a SNS that is very likely to profit from reciprocal recommendations. This is followed by a

unique data generation approach that uses the Chaos GQL specification (section 4.4.1.2) to

incrementally build a social network by fetching the selected interaction and profile data

from the prior analysis via Reciprocal BFS from a public API endpoint (section 4.4.1.3). Next,

the resulting user profiles were prepared for model input by using the built-in feature en-

gineering capabilities of Chaos, including an approach to automatically categorize relevant

text entities (section 4.4.2).

Finally, we evaluated the different profile feature categories (bio, skill, organization, location)

and their predictive power by performing cross-validation (section 4.4.3.1) and interpreted

the resulting embeddings (section 4.4.3.2). Moreover, we have shown how the framework to

gain deep insights into the social universe of the platform’s users.

While one might concentrate on the repositories and versioning aspect only at first sight,

open-source and free software relies on contributions made by humans, thus applying Chaos

on a popular code collaboration platform is an important step to improve the social dimension

of software engineering.

99

5 Conclusions

There are only patterns, patterns on top of patterns,

patterns that affect other patterns. Patterns hidden by

patterns. Patterns within patterns. If you watch close,

history does nothing but repeat itself.

What we call chaos is just patterns we haven’t recognized.

What we call random is just patterns we can’t decipher.

What we can’t understand we call nonsense.

Chuck Palahniuk • Survivor

In the previous section, we introduced the framework Chaos by first presenting its general

building blocks (section 4.2), its algorithms (section 4.3) and then applying them in a real-

world scenario (section 4.4), which can be reproduced by the reader.

In this final chapter of the thesis, we first examine the contributions, opportunities and lim-

itations of this work (section 5.1) and wrap them up by referring to the objectives from the

introduction (section 5.2). At the very end, we provide an outlook (section 5.3) for the future

of Chaos and address research possibilities for RRSs in general.

101

5 Conclusions

5.1 Contributions

Figure 5.1.1: Perspective and challenges of RRSs

Source: [Pal+20]

The contributions of this work are best summarized by relating to the most recent paper

[Pal+20] about the state-of-art for RRSs. Figure 5.1.1 shows the various research opportuni-

ties of RRSs divided into 5 perspectives. In the following, we go through each area section-

wise and describe what Chaos has contributed and where it still needs to be improved.

5.1.1 Recommendation Approaches

5.1.1.1 Approach to the research question

To the best of the author’s knowledge, Chaos is the first of its kind RRS framework which

incorporates an existing hybrid RS latent factor model library. Thus, answering the research
question from the end of section 1.2:

Can a user-to-item RS be utilized to generate reciprocal user-to-user recommendations?

102

5.1 Contributions

Utilizing and integrating an existing user-to-item RS is indeed possible, as we have demon-

strated in section 4.3.1 in accordance with the reciprocity-fulfilling (eq. (3.1.2)) algorithm in

section 4.3.2. This findingmight be obvious, considering that RRSs are a subarea (or children)

of RSs, although the relationship between the two is sometimes referred to as “fundamentally
different” in literature, which we consider as inaccurate: The base fundament of algorithms

is inherently similar and not different, although RRSs are inherently more complex to han-

dle, for example due to their wide-ranging differences given by their always prevalent social

dimension as highlighted in section 3.2 and section 3.3. Due to the rareness of our presented

approach (see section 4.1.2.3), it might be more appropriate to change the wording here to

a less drastic version that encourages RS researchers to enter the area of RRSs for transfer
learning to take effect.

In comparison, with LFRR [NP19b], another RRS latent factor model has been introduced in

September 2019 (see section 4.3.1 for details) which integrates an existing well-known CF

MF model (section 2.2.2.1). However, it relies on explicit feedback and requires to partition

the interaction matrix based on the amount of classes (e.g. male and female) with each be-

ing trained in isolation. By contrast, Chaos is specialized in implicit feedback and has the

advantage of simplicity by only needing one single RS (based on LightFM) to be trained that

is used to derive recommendations for 𝑛 user classes (section 4.3.1). Moreover, it is able to

embed profile data effortlessly (as demonstrated in section 4.4.2), where in [NP19b] the latent

factors are only used for CF, without the ability to enrich the model by embedding compre-

hensive user profile data to mitigate the cold-start problem (section 3.3.1.1). Nonetheless, we

clearly note that our approach from section 4.3.1 still needs to be evaluated more extensively

in further studies to validate the effectiveness (see outlook section 5.3.2 and section 5.3.3).

5.1.1.2 Other approaches contributed to

Referring to fig. 5.1.1: With Chaos supporting a hybrid model (section 4.3.1) and a pure

CF-based approach (section 4.3.3) is a good opportunity to tackle the “prevalence of content-

based RRS”. Furthermore, Chaos natively uses a social network as data model (section 4.2.1),

which eases researching “social-network driven strategies”, thus also supporting the well-

known RCF (section 4.3.3). Moreover, we hope that the novel method to build a prediction

graph leads to new post-optimization possibilities (see outlook section 5.3.1)

With the proposed architecture and feature engineering techniques (section 2.3.2 and sec-

103

5 Conclusions

tion 4.4.2) we also contributed to the process of “managing unstructured data” and enable

new “cross-domain” solutions by combining users from multiple industries and by sourcing

data from a public third-party API as demonstrated with the GitHub GraphQL API (sec-

tion 4.4.1.2).

Regarding the “social dimension for preference prediction”, Chaos enabled the use of com-

mon algorithms from social network analysis by the presented data model (section 4.2.1),

but we see room for supporting advanced link prediction methods [Pal+20, p. 44] [see also

Agg+16, pp. 326 ff.] and in supporting group formations, especially in learning/knowledge-

transfer scenarios [Pal+20, p. 24]. Additionally on the limitations side, we did not consider

“context-aware strategies” or “knowledge-based strategies”, neither within the framework

nor within this thesis, see upcoming outlook section 5.3.1.1.

5.1.2 Emerging Applications

First and foremost, Chaos does not conceptually exclude users from the recommendation

process and therewith enables a broad spectrum of applications to be used in. As a non-

binary single-class RRS (see section 3.1.2.2), Chaos is inclusive by default (see also analyzed

requirements in section 3.3). In section 4.2.4.2, we presented a reciprocal candidate gen-

eration approach to still consider both users’ must-have criteria. This is useful to support

explicit user wishes (e.g. filtering for project partners that have experience in a specific pro-

gramming language) or in a dating RE, supporting multiple sexual orientations. Chaos is

designed in a generic way to be able to also handle two-class scenarios, whereas in con-

trast two-class RRSs typically fail to be used for single-class or ≥ 3 classes (see fig. 4.3.1 for

example). Still, explicitly supporting two-class RRSs in addition to the framework’s above-

described approach might bring advantages. For instance, if the two classes never share a

common set of attributes, it might be more fitting (e.g. from an efficiency viewpoint) to spe-

cialize to a two-class RRS, which is why we leave the door open here for contributions of any

kind (see outlook section 5.1). In addition to that, as Chaos’ data model and algorithms are

specialized in implicit feedback, we support a highly useful feedback type that is typically

widely available (section 2.2.3.2). Still, in some applications, it might be wanted to to con-

sider explicit feedback (either additionally or separately) in a later release, e.g. by adapting

the interaction model to also support negative strengths (see section 4.2.1.1).

Referring to “professional collaboration and knowledge transfer” in fig. 5.1.1, with the real-

104

5.1 Contributions

world GitHub example (section 4.4), we have demonstrated that Chaos is suitable to be used

for reciprocal follower or code-collaborator recommendations. As we have analyzed in sec-

tion 4.4.1, the platform can in fact be considered as a SNS with complex interaction types

that are subject be further examined. For instance, we introduced the term of transitive in-
teractions in eq. (4.4.1) which we consider relevant for REs, but their effect and effectiveness

requires further studying.

5.1.3 Fusion Strategies and Reciprocity

The fusion of single-sided preferences is the most important aspect of a RRS that differen-

tiates them from a classic RRS [Pal+20] (see section 3.1.2.1). Therefore, in section 4.3.2 we

presented a generic reciprocity enabler that wraps a user-to-user RS to fulfil the reciprocity

condition (see section 3.1.1 for the definition) by aggregating the user preferences accord-

ing to a specified strategy (fig. 4.3.2). Supporting different strategies has been motivated by

[NP19a] and [Pal+20]: With Chaos, we expect to see upcoming experiments and compar-

isons between the strategies which are enabled by the evaluation capabilities (fig. 4.4.3) in

reproducible fashion, which brings us to the next section.

5.1.4 Evaluation and Reproducibility

With our approach in making chapter 4 partly interactive with help of JupyterLab (see note-

book 4.2.1 and notebook 4.4.1), we aimed to include the reader in a practice-oriented way

and therewith promote reproducibility. Furthermore, with the GitHub scenario (section 4.4),

we have decided for public data and shown how to actually generate data from a publicly

available third-party API (section 4.4.1). We aim for the introduced reciprocal BFS algorithm

(section 4.4.1.3) and the presented GQL specification (section 4.4.1.2) to lead to a literal net-

work effect for researchers to use publicly available data for evaluation instead of proprietary

datasets that no external party can access.

Regarding the cross-algorithm evaluation of RRSs, further research and improvements are

required, see outlook section 5.3.3. Moreover, the other aspects of this field in fig. 5.1.1 were

out of this thesis’ scope due to the framework focus, i.e. the primary objective of engineering

a RRS framework is not to perform a user study or to measure success for multiple stake-

holders [Pal+20], but we especially acknowledge that evaluation metrics should be more

“user-centered” and “reciprocity-aware” as posed in [Pal+20, p. 44].

105

5 Conclusions

5.1.5 Fairness, Explainability and Ethical Considerations

Regarding fairness and ethical considerations, we have shown an experimental approach in

section 4.2.3 and especially section 4.2.3.1 to incorporate the popularity of a user into the

model to mitigate the popularity bias which we introduced in section 2.3.3 (RS) and sec-

tion 3.3.1.3 (RRS).

Towards explainability (and the emerging field of explainable AI): We successfully analyzed

and presented the current state-of-the-art for this particularly important user-satisfaction

enhancing method in section 3.3.1.4. Thereafter in section 4.4.3, we have shown a way to

calculate the similarity of user profile attributes and outlined how this can be used in con-

junction with the method described in section 3.3.1.4 to generate domain-specific, transparent
and effective explanations (see section 2.3.4 for the exact guidelines). On top of that, with the

automatized export to the featureful TensorBoard Projector, we aimed to provide an expla-

nation method targeted at researchers that fulfills the above-noted guidelines. Remarkably,

the first step in providing high-quality explanations for end-users lays in offering a suitable

explanation interface for the humans who develop the explanation functionality itself. If

we are not able to comprehend the way the system recommends, neither will the end-users

(at least not in a truthful transparent way, see objective transparency in section 2.3.4). For

limitations regarding this aspect, see the outlook section 5.3.2.

106

5.2 Objectives accomplished in Code

5.2 Objectives accomplished in Code

Back to the beginning: We faced the problem of limited reproducibility regarding RSs and

RRSs in section 1.2. For RRSs, we see that the history of their parent (RSs) is inherited and

repeated: As found and formulated by Ekstrand et al. for RSs, “algorithmic enhancements

are typically published as mathematical formulae rather than working code, [...] important

optimizations such as preprocessing normalization steps may be omitted, leading to new

algorithms being incorrectly evaluated [...]” [Eks+11] – the same applies to our analyzed

state-of-the-art of RRSs.

Therefore, from the experience of this work, with respect to the analyzed literature, we derive

and propose the following three guidelines for future research:

1. Pseudo-code is not code: Pseudo-code might be a suitable tool to create drafts and/or

to show the concept of an algorithm, but it is neither standardized nor executable.

2. Provide code over pseudo-code: When providing pseudo-code, it should be a sup-

plement and not the only resource. The (re-)implementation based on formulae or

pseudo-code is often error-prone and time-consuming as it always allows room for

interpretation [see also Eks+11]. In the field of data science and ML, Python is the de

facto standard [DH20] and therefore an appropriate domain-specific choice to accom-

pany a scientific RRS paper with hosted code.1

3. Aim for open data: The task of providing SNS open data requires interdisciplinary

work (legal, diplomatic, security/privacy-related) and is indeed non-trivial. However,

if possible, RRS algorithms should be tested against publicly available data [Pal+20,

p. 45], just as in the RS landscape (for instance MovieLens dataset), which aids the

comparability of different algorithms in combination with a unified evaluation process

(outlook section 5.3.3).

Further meta-science guidance can be obtained from the manifesto for reproducible science
[Mun+17]which formulates generic concepts that are in fact also highly applicable to RSs/RRSs.

Ultimately, with direct reference to the objectives of this thesis: With Chaos, we engineered

a framework for RRSs that figuratively speaking aims to build a solid bridge between the

research and development departments of RRSs, with the ultimate goal that in the future,

1A suitable good example how the harmony between an executable code-base and scientific RS model defini-
tions can be accomplished is given by the LightFM project [KC20] and its paper [Kul15].

107

5 Conclusions

improvements are not developed in a “decentralized fashion” [Eks+11] anymore, thus greatly

accelerating the research. Comparing RSs and RRSs in the textual work (the thesis at hand) as

well as in the implemented work (the framework) helps with finding out which good aspects

can be inherited from the parent of RSs. We also aimed to lower the entry barrier for new

participants in the RRS domain by outlining the most important and recent challenges as

well as algorithms.

5.3 Outlook

5.3.1 Recommendation Optimizations

We see opportunities in optimizing the recommendation core of Chaos from an effectiveness

(making good recommendations), as well as from an efficiency (making recommendations in

reasonable time) viewpoint.

5.3.1.1 Effectiveness

Towards increasing the effectiveness of recommendations:

• Prediction graph exploration and exploitation: Building a prediction graph as de-

scribed in section 4.2.4.3 helps with gaining a full view on the recommendations and

users who are predicted to be reciprocally compatible (symmetric edges between two

nodes). Therefore, algorithms might be performed on the prediction graph itself to

post-optimize recommendations. For instance, a cycle-based algorithm can be used to

find (indirectly) reciprocally compatible pairs or algorithms from trust networks (see

[Agg+16]) could increase effectiveness. Interestingly, RCF (section 4.3.3) could also be

executed on the non-reciprocal prediction graph that is e.g. produced with the bare

LFMPredictor (section 4.3.1), perhaps improving the recommendation quality.

• Tackling reciprocal cold-start: Enhance RCF to support cold-start; for instance, by

finding a user with similar attributes as a reference user before executing the algorithm

[Agg+16] (i.e. by combining it with a pure CBF-based approach as a pre-strategy

[Pal+20]). This method of finding a similar user by content data could also be inte-

grated into the ReciprocalWrapper (section 4.3.2).

All of the opportunities have in common that they should consider the contextual informa-

108

5.3 Outlook

tion of the user [Pal+20, p. 43]. Hence, in the future, strategies that combine different recom-

mendation approaches according to user context (recent interactions, time, location, activity,

reciprocity or other graph-basedmetrics, but also popularity) might have a significant impact

on the effectiveness. For this reason, we also see potential in closely examining multi-armed
bandit algorithms (see [see Agg+16, pp. 418 ff.]) in the reciprocal context.

5.3.1.2 Efficiency

On the computational efficiency side:

• Parallelization: RCF (see section 4.3.3) needs to be parallelized to make it scalable for

bigger datasets, as it is highly inefficient when calculating recommendations for a user

given a large amount of candidates and neighbours through its in-memory nature (see

also [NP19b] which confirms these findings).

• Graph-based: RCF as well as the data model in general (section 4.2.1) would profit

from a high-performance graph backend; for this, Grapresso (see section 4.1.2) might

require an upgrade to support lower-level backends, e.g. based on Cython. Grapresso

also supports copying to other backends; as such, it would not loose access to the broad

algorithmic spectrum of NetworkX (see section 4.2.3).

• Reciprocal Factorization Machine: The LightFM model on which the LFMPredictor
relies (section 4.3.1) is a specialization of a FM, as outlined by the end of section 2.2.3.1.

With FMs’ sophisticated interaction model [Ren10], it might be worth to take a look

into how FMs can represent user-to-user interactions directly without using LightFM
as an intermediary that needs to be adapted first for this purpose (section 4.3.1). More-

over, they might enable the integration of contextual information such as time or a

few last (possibly reciprocal) interactions with other users.

5.3.2 Interpretability and Explainability

The presented hybrid model (LFMPredictor) which integrates LightFM needs to be more

extensively studied regarding its interpretability and explanation capabilities. With direct

reference to section 4.3.1, the following research questions are proposed:

1. How does the semantic of embeddings from eq. (2.2.11) and eq. (2.2.12) (resembling 𝑢
and 𝑣 in section 4.3.1) differ when calculating the profile attribute or user similarities?

109

5 Conclusions

2. Is it sometimes (e.g. in cold-start scenarios) preferable to calculate the cosine similarity

of 𝑢 to other users instead of calculating the dot product?

5.3.3 Unified Evaluation

As noted by the end of section 4.2.5.2, a first prototype of the GraphEvaluator has been de-

veloped which is able to perform reciprocal cross-validation (see section 4.2.5) on any imple-

mentation of the Predictor interface. However, the functionality still needs to be validated

and possibly refined due to the following two uncertainties that need to be eliminated:

1. Mixed metrics: The introduced data model (section 4.2.1.1) permits unidirectional as

well as bidirectional interactions (section 4.2.1.1). Therefore, if we solely follow the

success definition from eq. (4.2.5), all training data where 𝑢 only interacted with 𝑣 (and

not the other way around) will be excluded from the test set. However, it might still

be wished to evaluate if the Predictor is able to estimate the one-sided preference

of 𝑢 towards 𝑣 additionally, hence there is a need for a mixed reciprocal/non-reciprocal
metric here, as predicting one side is still better than predicting neither.

2. Successful train vs. test: If the Predictor correctly predicts a successful interaction

from the training set, should it be in- or excluded from the score calculation against

the known positive interactions from the test set? While libraries such as LightFM
leave both options open [KC20], we still see the need for discussion here and also the

requirement of finding a proper naming for the method.

Currently, research itself lacks of a stable and standardized evaluation method for RRSs,

especially in the context of cross-validation and implicit feedback. Many papers re-define the

evaluation for their own purposes, cf. for instance [NP19b] [Xia+15] [Ake+11] [Piz+10b].

Even though some of them might refer to one and the same, they are described all over again

in various notations – the RRS landscape will profit from a unified evaluation methodology

that is able to work across various algorithms and that can be used as a reference in research

papers. Therefore, as a first move, we propose a peer-(code)review of the GraphEvaluator
after Chaos has been deployed to the public, which leads us to the final section of this thesis.

110

5.3 Outlook

5.3.4 Collaborative Chaos

Lastly andmost importantly, Chaoswill be fully open-source and the publication is scheduled

for the beginning of spring 2021: In the long run, the framework can only flourish when it

is published and other contributors join.

Thinking ahead of time, Chaos Helps Activating Online Societies – maybe it can be used by

itself to form a reciprocally compatible society of contributors; just as chaotic as it might

seem at first sight.

111

Bibliography

Books

[Agg+16] Charu C Aggarwal et al. Recommender Systems. The Textbook. Vol. 1.
Springer, 2016.

[Fal19] Kim Falk. Practical Recommender Systems. 2019, p. 432. isbn: 9781617292705.

Articles and Conference Papers

[Abd+19] Himan Abdollahpouri et al.

“The unfairness of popularity bias in recommendation”.

In: arXiv preprint arXiv:1907.13286 (2019).

[Ake+11] Joshua Akehurst et al.

“CCR — a content-collaborative reciprocal recommender for online dating”.

In: Twenty-Second International Joint Conference on Artificial Intelligence. 2011.

[Aki+19] Takuya Akiba et al.

“Optuna: A Next-generation Hyperparameter Optimization Framework”.

In: CoRR abs/1907.10902 (2019). arXiv: 1907.10902.
url: http://arxiv.org/abs/1907.10902.

[App+17] Orestes Appel et al. “Cross-ratio uninorms as an effective aggregation

mechanism in sentiment analysis”.

In: Knowledge-Based Systems 124 (2017), pp. 16–22.

[Bee+16] Joeran Beel et al. “Towards reproducibility in recommender-systems research”.

In: User modeling and user-adapted interaction 26.1 (2016), pp. 69–101.

(Visited on 08/01/2020).

113

https://arxiv.org/abs/1907.10902
http://arxiv.org/abs/1907.10902

[Bob+11] Jesus Bobadilla et al. “A collaborative filtering approach to mitigate the new

user cold start problem”.

In: Knowledge Based Systems - KBS 26 (Jan. 2011), p. 14.

doi: 10.1016/j.knosys.2011.07.021.

[Bui+13] Lars Buitinck et al. “API design for machine learning software: experiences

from the scikit-learn project”. In: arXiv preprint arXiv:1309.0238 (2013).

[BZ83] Daniel Brand and Pitro Zafiropulo. “On communicating finite-state machines”.

In: Journal of the ACM (JACM) 30.2 (1983), pp. 323–342.

[CAS16] Paul Covington, Jay Adams, and Emre Sargin.

“Deep neural networks for Youtube Recommendations”.

In: Proceedings of the 10th ACM conference on recommender systems. 2016,
pp. 191–198. doi: 10.1145/2959100.2959190.
url: https://storage.googleapis.com/pub-tools-public-publication-
data/pdf/45530.pdf.

[Dac+19] Maurizio Ferrari Dacrema et al. “A Troubling Analysis of Reproducibility and

Progress in Recommender Systems Research”. In: (2019).

arXiv: 1911.07698 [cs.IR]. (Visited on 08/01/2020).

[DH20] Kai Dinghofer and Frank Hartung.

“Analysis of Criteria for the Selection of Machine Learning Frameworks”.

In: 2020 International Conference on Computing, Networking and
Communications (ICNC). 2020, pp. 373–377.
doi: 10.1109/ICNC47757.2020.9049650.

[Eks+11] Michael D Ekstrand et al. “Rethinking the recommender research ecosystem:

reproducibility, openness, and LensKit”.

In: Proceedings of the fifth ACM conference on Recommender systems. 2011,
pp. 133–140.

[GF17] Bryce Goodman and Seth Flaxman. “European Union regulations on

algorithmic decision-making and a “right to explanation””.

In: AI magazine 38.3 (2017), pp. 50–57.

114

https://doi.org/10.1016/j.knosys.2011.07.021
https://doi.org/10.1145/2959100.2959190
https://storage.googleapis.com/pub-tools-public-publication-data/pdf/45530.pdf
https://storage.googleapis.com/pub-tools-public-publication-data/pdf/45530.pdf
https://arxiv.org/abs/1911.07698
https://doi.org/10.1109/ICNC47757.2020.9049650

Articles and Conference Papers

[GJG14] Fatih Gedikli, Dietmar Jannach, and Mouzhi Ge. “How should I explain? A

comparison of different explanation types for recommender systems”.

In: International Journal of Human-Computer Studies 72.4 (2014), pp. 367–382.

doi: 10.1016/j.ijhcs.2013.12.007.

[HDB20] Thomas Hellström, Virginia Dignum, and Suna Bensch.

“Bias in Machine Learning – What is it Good for?” In: (2020).

arXiv: 2004.00686 [cs.AI].

[HKV08] Yifan Hu, Yehuda Koren, and Chris Volinsky.

“Collaborative filtering for implicit feedback datasets”.

In: 2008 Eighth IEEE International Conference on Data Mining. IEEE. 2008,
pp. 263–272.

[KBV09] Yehuda Koren, Robert Bell, and Chris Volinsky.

“Matrix factorization techniques for recommender systems”.

In: Computer 42.8 (2009), pp. 30–37.

[Kle+18] Akiva Kleinerman et al. “Optimally balancing receiver and recommended

users’ importance in reciprocal recommender systems”.

In: Proceedings of the 12th ACM Conference on Recommender Systems. 2018,
pp. 131–139.

[KRK18] Akiva Kleinerman, Ariel Rosenfeld, and Sarit Kraus.

“Providing explanations for recommendations in reciprocal environments”.

In: Proceedings of the 12th ACM Conference on Recommender Systems. 2018,
pp. 22–30. doi: 10.1145/3240323.

[Kul15] Maciej Kula.

“Metadata Embeddings for User and Item Cold-start Recommendations”.

In: Proceedings of the 2nd Workshop on New Trends on Content-Based
Recommender Systems co-located with 9th ACM Conference on Recommender
Systems (RecSys 2015), Vienna, Austria, September 16-20, 2015.
Ed. by Toine Bogers and Marijn Koolen. Vol. 1448.

CEUR Workshop Proceedings. CEUR-WS.org, 2015, pp. 14–21.

url: http://ceur-ws.org/Vol-1448/paper4.pdf.

[Lew13] Kevin Lewis. “The limits of racial prejudice”. In: Proceedings of the National
Academy of Sciences 110.47 (2013), pp. 18814–18819.

115

https://doi.org/10.1016/j.ijhcs.2013.12.007
https://arxiv.org/abs/2004.00686
https://doi.org/10.1145/3240323
http://ceur-ws.org/Vol-1448/paper4.pdf

[Mit80] Tom M Mitchell. “The need for biases in learning generalizations”. In: (1980).

[Mun+17] Marcus R Munafò et al. “A manifesto for reproducible science”.

In: Nature human behaviour 1.1 (2017), pp. 1–9.

[NP19a] James Neve and Ivan Palomares.

“Aggregation Strategies in User-to-User Reciprocal Recommender Systems”.

In: 2019 IEEE International Conference on Systems, Man and Cybernetics (SMC).
IEEE. 2019, pp. 4031–4036.

[NP19b] James Neve and Ivan Palomares. “Latent factor models and aggregation

operators for collaborative filtering in reciprocal recommender systems”.

In: Proceedings of the 13th ACM Conference on Recommender Systems. 2019,
pp. 219–227.

[Pal+20] Ivan Palomares et al.

“Reciprocal Recommender Systems: Analysis of State-of-Art Literature,

Challenges and Opportunities on Social Recommendation”. In: (2020).

arXiv: 2007.16120 [cs.SI].
url: https://arxiv.org/pdf/2007.16120v2.pdf.

[Piz+10a] Luiz Pizzato et al. “Reciprocal Recommenders”. In: (2010).

url: http://ceur-ws.org/Vol-606/paper5.pdf.

[Piz+10b] Luiz Pizzato et al. “RECON: a reciprocal recommender for online dating”.

In: Proceedings of the fourth ACM conference on Recommender systems. 2010,
pp. 207–214.

[PRG16] Fereshteh-Azadi Parand, Hossein Rahimi, and Mohsen Gorzin. “Combining

fuzzy logic and eigenvector centrality measure in social network analysis”.

In: Physica A: Statistical Mechanics and its Applications 459 (2016), pp. 24–31.

[Ren10] S. Rendle. “Factorization Machines”.

In: 2010 IEEE International Conference on Data Mining. 2010, pp. 995–1000.
doi: 10.1109/ICDM.2010.127.

[SFR+06] K Shyong, Dan Frankowski, John Riedl, et al.

“Do you trust your recommendations? An exploration of security and privacy

issues in recommender systems”. In: International Conference on Emerging
Trends in Information and Communication Security. Springer. 2006, pp. 14–29.

116

https://arxiv.org/abs/2007.16120
https://arxiv.org/pdf/2007.16120v2.pdf
http://ceur-ws.org/Vol-606/paper5.pdf
https://doi.org/10.1109/ICDM.2010.127

Software and Documentation

url:

http://files.grouplens.org/papers/lam-etrics2006-security.pdf.

[Ste10] Harald Steck.

“Training and testing of recommender systems on data missing not at random”.

In: Proceedings of the 16th ACM SIGKDD international conference on Knowledge
discovery and data mining. 2010, pp. 713–722.

[Van+18] Jacob VanderPlas et al. “Altair: Interactive statistical visualizations for python”.

In: Journal of open source software 3.32 (2018), p. 1057.

url: https://altair-viz.github.io/.

[Wic+14] Hadley Wickham et al. “Tidy data”.

In: Journal of Statistical Software 59.10 (2014), pp. 1–23.

url: http://vita.had.co.nz/papers/tidy-data.pdf.

[Xia+15] Peng Xia et al. “Reciprocal recommendation system for online dating”.

In: 2015 IEEE/ACM International Conference on Advances in Social Networks
Analysis and Mining (ASONAM). IEEE. 2015, pp. 234–241.
url: https://arxiv.org/abs/1501.06247v2.

[Xia+16] Peng Xia et al.

“Design of reciprocal recommendation systems for online dating”.

In: Social Network Analysis and Mining 6.1 (2016), p. 32.

Software and Documentation

[Hon+20] Matthew Honnibal et al.

spaCy: Industrial-strength Natural Language Processing in Python. 2020.
doi: 10.5281/zenodo.1212303. url: https://spacy.io/api.

[HSS08] Aric A. Hagberg, Daniel A. Schult, and Pieter J. Swart.

Exploring Network Structure, Dynamics, and Function using NetworkX.
Ed. by Gaël Varoquaux, Travis Vaught, and Jarrod Millman.

Pasadena, CA USA, 2008. url:

https://networkx.org/documentation/stable/reference/algorithms/.

117

http://files.grouplens.org/papers/lam-etrics2006-security.pdf
https://altair-viz.github.io/
http://vita.had.co.nz/papers/tidy-data.pdf
https://arxiv.org/abs/1501.06247v2
https://doi.org/10.5281/zenodo.1212303
https://spacy.io/api
https://networkx.org/documentation/stable/reference/algorithms/

[KC20] Maciej Kula and Contributors. LightFM 1.15. 2020.
url: https://making.lyst.com/lightfm/docs/lightfm.html (visited on

12/11/2020).

[Tea20] GitHub Team. GraphQL Queries - GitHub Docs. 2020.
url: https://docs.github.com/en/free-pro-
team@latest/graphql/reference/queries (visited on 12/01/2020).

Websites and Blog-Articles

[Goo18] Developers at Google. Recommendation Systems Google Course. Nov. 30, 2018.

url: https://developers.google.com/machine-
learning/recommendation/collaborative/matrix.

[Goo20] Developers at Google. Machine Learning Course. Feb. 10, 2020.
url: https://developers.google.com/machine-learning/crash-
course/ml-intro (visited on 08/01/2020).

[Kul18] Maciej Kula. Explicit vs. Implicit Recommendations. Jan. 21, 2018.
url: https://github.com/maciejkula/explicit-vs-implicit (visited on

08/01/2020).

[Lun20] Eric Lundquist.

Factorization Machines for Item Recommendation with Implicit Feedback Data.
June 28, 2020. url: https://towardsdatascience.com/-5655a7c749db.

[Mcm19] Thomas Mcmullan. Are the algorithms that power dating apps racially biased?
Feb. 17, 2019.

url: https://www.wired.co.uk/article/racial-bias-dating-apps.

[Pre16] Gil Press. Cleaning Big Data: Most Time-Consuming, Least Enjoyable Data
Science Task, Survey Says. Mar. 23, 2016.

url: https://www.forbes.com/sites/gilpress/2016/03/23/data-
preparation-most-time-consuming-least-enjoyable-data-science-
task-survey-says.

[Ren19] Emre Rençberoğlu.

Fundamental Techniques of Feature Engineering for Machine Learning.
Apr. 1, 2019. url: https://towardsdatascience.com/-3a5e293a5114.

118

https://making.lyst.com/lightfm/docs/lightfm.html
https://docs.github.com/en/free-pro-team@latest/graphql/reference/queries
https://docs.github.com/en/free-pro-team@latest/graphql/reference/queries
https://developers.google.com/machine-learning/recommendation/collaborative/matrix
https://developers.google.com/machine-learning/recommendation/collaborative/matrix
https://developers.google.com/machine-learning/crash-course/ml-intro
https://developers.google.com/machine-learning/crash-course/ml-intro
https://github.com/maciejkula/explicit-vs-implicit
https://towardsdatascience.com/-5655a7c749db
https://www.wired.co.uk/article/racial-bias-dating-apps
https://www.forbes.com/sites/gilpress/2016/03/23/data-preparation-most-time-consuming-least-enjoyable-data-science-task-survey-says
https://www.forbes.com/sites/gilpress/2016/03/23/data-preparation-most-time-consuming-least-enjoyable-data-science-task-survey-says
https://www.forbes.com/sites/gilpress/2016/03/23/data-preparation-most-time-consuming-least-enjoyable-data-science-task-survey-says
https://towardsdatascience.com/-3a5e293a5114

Websites and Blog-Articles

[Ros16] Ethan Rosenthal. Learning to Rank Sketchfab Models with LightFM. 2016. url:

https://www.ethanrosenthal.com/2016/11/07/implicit-mf-part-2/.

119

https://www.ethanrosenthal.com/2016/11/07/implicit-mf-part-2/

A Appendix

If you physically hold this thesis, you can find a 16GB USB stick on this final page.

It contains a digital copy including all needed project files, created at January 28, 2021 and

in trust given to the the 1st and the 2nd examiner.

121

	1 Introduction
	1.1 Motivation
	1.2 Objectives
	1.3 Conventions
	1.4 Overview

	2 Recommender Systems
	2.1 Terminology
	2.2 Types
	2.2.1 Content-Based Filtering
	2.2.2 Collaborative Filtering
	2.2.2.1 Matrix Factorization - Intro
	2.2.2.2 Matrix Factorization - Loss and Objective
	2.2.2.3 Summary

	2.2.3 Hybrid: LightFM
	2.2.3.1 Embedding Metadata Features
	2.2.3.2 Implicit Feedback Specialization
	2.2.3.3 Summary

	2.3 Challenges
	2.3.1 Tackling Cold-Start
	2.3.2 Feature Engineering
	2.3.3 Fairness
	2.3.4 Explainability
	2.3.5 Summary

	3 Reciprocal Recommender Systems
	3.1 Introduction
	3.1.1 Definition
	3.1.2 Specifics
	3.1.2.1 Preference Aggregation
	3.1.2.2 Single-class vs. Two-class
	3.1.2.3 Symmetric vs. Asymmetric Interaction

	3.2 Summary: Comparison to traditional RS
	3.3 Analysis of Requirements
	3.3.1 Challenges and Difficulty
	3.3.1.1 Cold-Start
	3.3.1.2 Feature Engineering
	3.3.1.3 Fairness
	3.3.1.4 Explainability

	3.3.2 Requirements

	4 Chaos
	4.1 Overview
	4.1.1 Workflow
	4.1.2 Technology
	4.1.2.1 Data Model
	4.1.2.2 Feature Engineering
	4.1.2.3 Prediction
	4.1.2.4 Visualization

	4.2 Core Components
	4.2.1 Data Model
	4.2.1.1 User Interactions
	4.2.1.2 User Profile

	4.2.2 Data Source
	4.2.3 Data Processor
	4.2.3.1 Alleviate Popularity Bias
	4.2.3.2 Summary

	4.2.4 Recommendation
	4.2.4.1 Translator
	4.2.4.2 Candidate Generator
	4.2.4.3 Predictor

	4.2.5 Evaluator
	4.2.5.1 Metrics
	4.2.5.2 Example and Summary

	4.3 Recommendation Algorithms
	4.3.1 LFMPredictor - Hybrid Model using LightFM
	4.3.2 ReciprocalWrapper - Reciprocity Enabler
	4.3.3 RCFPredictor - Reciprocal Collaborative-Filtering

	4.4 Chaos for GitHub
	4.4.1 Data Generation
	4.4.1.1 Interactions and User Profile
	4.4.1.2 Chaos GQL Specification
	4.4.1.3 Reciprocal BFS

	4.4.2 Feature Engineering
	4.4.3 Results
	4.4.3.1 Evaluation
	4.4.3.2 Explainability and Visualization
	4.4.3.3 Summary

	5 Conclusions
	5.1 Contributions
	5.1.1 Recommendation Approaches
	5.1.1.1 Approach to the research question
	5.1.1.2 Other approaches contributed to

	5.1.2 Emerging Applications
	5.1.3 Fusion Strategies and Reciprocity
	5.1.4 Evaluation and Reproducibility
	5.1.5 Fairness, Explainability and Ethical Considerations

	5.2 Objectives accomplished in Code
	5.3 Outlook
	5.3.1 Recommendation Optimizations
	5.3.1.1 Effectiveness
	5.3.1.2 Efficiency

	5.3.2 Interpretability and Explainability
	5.3.3 Unified Evaluation
	5.3.4 Collaborative Chaos

	A Appendix

